Exemple #1
0
def main(args):
    print('Loading dataset...')
    x_train, y_train = load_data_and_labels(args.train_data)
    x_valid, y_valid = load_data_and_labels(args.valid_data)

    print('Transforming datasets...')
    p = IndexTransformer(use_char=args.no_char_feature)
    p.fit(x_train, y_train)

    print('Building a model.')
    model = BiLSTMCRF(char_embedding_dim=args.char_emb_size,
                      word_embedding_dim=args.word_emb_size,
                      char_lstm_size=args.char_lstm_units,
                      word_lstm_size=args.word_lstm_units,
                      char_vocab_size=p.char_vocab_size,
                      word_vocab_size=p.word_vocab_size,
                      num_labels=p.label_size,
                      dropout=args.dropout,
                      use_char=args.no_char_feature,
                      use_crf=args.no_use_crf)
    model, loss = model.build()
    model.compile(loss=loss, optimizer='adam')

    print('Training the model...')
    trainer = Trainer(model, preprocessor=p)
    trainer.train(x_train, y_train, x_valid, y_valid)

    print('Saving the model...')
    model.save(args.weights_file, args.params_file)
    p.save(args.preprocessor_file)
Exemple #2
0
def main(args):
    print('Loading datasets...')
    X, y = load_data_and_labels(args.data_path)
    x_train, x_valid, y_train, y_valid = train_test_split(X,
                                                          y,
                                                          test_size=0.1,
                                                          random_state=42)
    embeddings = KeyedVectors.load(args.embedding_path).wv

    print('Transforming datasets...')
    p = IndexTransformer()
    p.fit(X, y)
    embeddings = filter_embeddings(embeddings, p._word_vocab,
                                   embeddings.vector_size)

    print('Building a model...')
    model = BiLSTMCRF(char_vocab_size=p.char_vocab_size,
                      word_vocab_size=p.word_vocab_size,
                      num_labels=p.label_size,
                      embeddings=embeddings,
                      char_embedding_dim=50)
    model.build()

    print('Training the model...')
    trainer = Trainer(model, preprocessor=p)
    trainer.train(x_train, y_train, x_valid, y_valid)

    print('Saving the model...')
    model.save(args.weights_file, args.params_file)
    p.save(args.preprocessor_file)
Exemple #3
0
    def test_save_and_load(self):
        it = IndexTransformer(lower=False)
        x1, y1 = it.fit_transform(self.x, self.y)
        x1_word, x1_char, x1_length = x1

        self.assertFalse(os.path.exists(self.preprocessor_file))
        it.save(self.preprocessor_file)
        self.assertTrue(os.path.exists(self.preprocessor_file))

        it = IndexTransformer.load(self.preprocessor_file)
        x2, y2 = it.transform(self.x, self.y)
        x2_word, x2_char, x2_length = x2

        np.testing.assert_array_equal(x1_word, x2_word)
        np.testing.assert_array_equal(x1_char, x2_char)
        np.testing.assert_array_equal(y1, y2)
Exemple #4
0
class BiLstmCrfNER(NERModel):

    def __init__(self,
            word_embedding_dim=100,
            char_embedding_dim=25,
            word_lstm_size=100,
            char_lstm_size=25,
            fc_dim=100,
            dropout=0.5,
            embeddings=None,
            use_char=True,
            use_crf=True,
            batch_size=16, 
            learning_rate=0.001, 
            max_iter=10):
        """ Construct a BiLSTM-CRF NER model. Model is augmented with character
            level embeddings as well as word embeddings by default. Implementation 
            is provided by the Anago project.

            Parameters
            ----------
            word_embedding_dim : int, optional, default 100
                word embedding dimensions.
            char_embedding_dim : int, optional, default 25
                character embedding dimensions.
            word_lstm_size : int, optional, default 100
                character LSTM feature extractor output dimensions.
            char_lstm_size : int, optional, default 25
                word tagger LSTM output dimensions.
            fc_dim : int, optional, default 100
                output fully-connected layer size.
            dropout : float, optional, default 0.5
                dropout rate.
            embeddings : numpy array
                word embedding matrix.
            use_char : bool, optional, default True
                add char feature.
            use_crf : bool, optional, default True
                use crf as last layer.
            batch_size : int, optional, default 16
                training batch size.
            learning_rate : float, optional, default 0.001
                learning rate for Adam optimizer
            max_iter : int
                number of epochs of training

            Attributes
            ----------
            preprocessor_ : reference to preprocessor
            model_ : reference to generated model
            trainer_ : internal reference to Anago Trainer (model)
            tagger_ : internal reference to Anago Tagger (predictor)
        """
        super().__init__()
        self.word_embedding_dim = word_embedding_dim
        self.char_embedding_dim = char_embedding_dim
        self.word_lstm_size = word_lstm_size
        self.char_lstm_size = char_lstm_size
        self.fc_dim = fc_dim
        self.dropout = dropout
        self.embedding = None
        self.use_char = True
        self.use_crf = True
        self.batch_size = batch_size
        self.learning_rate = learning_rate
        self.max_iter = max_iter
        # populated by fit() and load(), expected by save() and transform()
        self.preprocessor_ = None
        self.model_ = None
        self.trainer_ = None
        self.tagger_ = None


    def fit(self, X, y):
        """ Trains the NER model. Input is list of list of tokens and tags.

            Parameters
            ----------
            X : list(list(str))
                list of list of tokens
            y : list(list(str))
                list of list of BIO tags

            Returns
            -------
            self
        """
        log.info("Preprocessing dataset...")
        self.preprocessor_ = IndexTransformer(use_char=self.use_char)
        self.preprocessor_.fit(X, y)

        log.info("Building model...")
        self.model_ = BiLSTMCRF(
            char_embedding_dim=self.char_embedding_dim,
            word_embedding_dim=self.word_embedding_dim,
            char_lstm_size=self.char_lstm_size,
            word_lstm_size=self.word_lstm_size,
            char_vocab_size=self.preprocessor_.char_vocab_size,
            word_vocab_size=self.preprocessor_.word_vocab_size,
            num_labels=self.preprocessor_.label_size,
            dropout=self.dropout,
            use_char=self.use_char,
            use_crf=self.use_crf)
        self.model_, loss = self.model_.build()
        optimizer = Adam(lr=self.learning_rate)
        self.model_.compile(loss=loss, optimizer=optimizer)
        self.model_.summary()

        log.info('Training the model...')
        self.trainer_ = Trainer(self.model_, preprocessor=self.preprocessor_)

        x_train, x_valid, y_train, y_valid = train_test_split(X, y, 
            test_size=0.1, random_state=42)
        self.trainer_.train(x_train, y_train, x_valid=x_valid, y_valid=y_valid,
            batch_size=self.batch_size, epochs=self.max_iter)

        self.tagger_ = Tagger(self.model_, preprocessor=self.preprocessor_)

        return self


    def predict(self, X):
        """ Predicts using the NER model.

            Parameters
            ----------
            X : list(list(str))
                list of list of tokens.

            Returns
            -------
            y : list(list(str))
                list of list of predicted BIO tags.
        """
        if self.tagger_ is None:
            raise ValueError("No tagger found, either run fit() to train or load() a trained model")

        log.info("Predicting from model...")
        ypreds = [self.tagger_.predict(" ".join(x)) for x in X]
        return ypreds


    def save(self, dirpath):
        """ Saves model to local disk, given a dirpath 
        
            Parameters
            ----------
            dirpath : str
                a directory where model artifacts will be saved.
                Model saves a weights.h5 weights file, a params.json parameter
                file, and a preprocessor.pkl preprocessor file.

            Returns
            -------
            None
        """
        if self.model_ is None or self.preprocessor_ is None:
            raise ValueError("No model artifacts to save, either run fit() to train or load() a trained model")

        if not os.path.exists(dirpath):
            os.makedirs(dirpath)

        weights_file = os.path.join(dirpath, "weights.h5")
        params_file = os.path.join(dirpath, "params.json")
        preprocessor_file = os.path.join(dirpath, "preprocessor.pkl")

        save_model(self.model_, weights_file, params_file)
        self.preprocessor_.save(preprocessor_file)

        write_param_file(self.get_params(), os.path.join(dirpath, "params.yaml"))


    def load(self, dirpath):
        """ Loads a trained model from local disk, given the dirpath

            Parameters
            ----------
            dirpath : str
                a directory where model artifacts are saved.

            Returns
            -------
            self
        """
        if not os.path.exists(dirpath):
            raise ValueError("Model directory not found: {:s}".format(dirpath))

        weights_file = os.path.join(dirpath, "weights.h5")
        params_file = os.path.join(dirpath, "params.json")
        preprocessor_file = os.path.join(dirpath, "preprocessor.pkl")

        if not (os.path.exists(weights_file) or 
                os.path.exists(params_file) or
                os.path.exists(preprocessor_file)):
            raise ValueError("Model files may be corrupted, exiting")
        
        self.model_ = load_model(weights_file, params_file)
        self.preprocessor_ = IndexTransformer.load(preprocessor_file)
        self.tagger_ = Tagger(self.model_, preprocessor=self.preprocessor_)

        return self
Exemple #5
0
class TestTrainer(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        if not os.path.exists(LOG_ROOT):
            os.mkdir(LOG_ROOT)

        if not os.path.exists(SAVE_ROOT):
            os.mkdir(SAVE_ROOT)

        cls.weights_file = os.path.join(SAVE_ROOT, 'weights.h5')
        cls.params_file = os.path.join(SAVE_ROOT, 'params.json')
        cls.preprocessor_file = os.path.join(SAVE_ROOT, 'preprocessor.pickle')

    def setUp(self):
        # Load datasets.
        train_path = os.path.join(DATA_ROOT, 'train.txt')
        valid_path = os.path.join(DATA_ROOT, 'valid.txt')
        self.x_train, self.y_train = load_data_and_labels(train_path)
        self.x_valid, self.y_valid = load_data_and_labels(valid_path)

        # Fit transformer.
        self.p = IndexTransformer()
        self.p.fit(self.x_train, self.y_train)

        # Build a model.
        self.model = BiLSTMCRF(char_vocab_size=self.p.char_vocab_size,
                               word_vocab_size=self.p.word_vocab_size,
                               num_labels=self.p.label_size)
        self.model, loss = self.model.build()
        self.model.compile(loss=loss, optimizer='adam')

    def test_train(self):
        trainer = Trainer(self.model, preprocessor=self.p)
        trainer.train(self.x_train,
                      self.y_train,
                      x_valid=self.x_valid,
                      y_valid=self.y_valid)

    def test_train_no_valid(self):
        trainer = Trainer(self.model, preprocessor=self.p)
        trainer.train(self.x_train, self.y_train)

    def test_train_no_crf(self):
        model = BiLSTMCRF(char_vocab_size=self.p.char_vocab_size,
                          word_vocab_size=self.p.word_vocab_size,
                          num_labels=self.p.label_size,
                          use_crf=False)
        model, loss = model.build()
        model.compile(loss=loss, optimizer='adam')
        trainer = Trainer(model, preprocessor=self.p)
        trainer.train(self.x_train,
                      self.y_train,
                      x_valid=self.x_valid,
                      y_valid=self.y_valid)

    def test_train_no_character(self):
        p = IndexTransformer(use_char=False)
        p.fit(self.x_train, self.y_train)
        model = BiLSTMCRF(word_vocab_size=p.word_vocab_size,
                          num_labels=p.label_size,
                          use_crf=False,
                          use_char=False)
        model, loss = model.build()
        model.compile(loss=loss, optimizer='adam')
        trainer = Trainer(model, preprocessor=p)
        trainer.train(self.x_train,
                      self.y_train,
                      x_valid=self.x_valid,
                      y_valid=self.y_valid)

    def test_save(self):
        # Train the model.
        trainer = Trainer(self.model, preprocessor=self.p)
        trainer.train(self.x_train, self.y_train)

        # Save the model.
        save_model(self.model, self.weights_file, self.params_file)
        self.p.save(self.preprocessor_file)
Exemple #6
0
def training(train, test, fold):
    x_train = [x.split() for x in train['sentence'].tolist()]
    y_train = train['tag'].tolist()

    x_test = [x.split() for x in test['sentence'].tolist()]

    print('Transforming datasets...')
    p = IndexTransformer(use_char=True)
    p.fit(x_train + x_test, y_train)

    skf = KFold(n_splits=config.nfolds, random_state=config.seed, shuffle=True)

    embeddings = load_glove(config.glove_file)
    # embeddings_fast = load_glove(config.glove_file)
    embeddings_wang = load_glove(config.wang_file)

    embeddings = filter_embeddings(embeddings, p._word_vocab.vocab,
                                   config.glove_size)
    # embeddings_fast = filter_embeddings(embeddings_fast, p._word_vocab.vocab, config.fasttext_size)
    embeddings_wang = filter_embeddings(embeddings_wang, p._word_vocab.vocab,
                                        config.wang_size)

    embeddings = np.concatenate((embeddings, embeddings_wang), axis=1)

    for n_fold, (train_indices, val_indices) in enumerate(skf.split(x_train)):

        if n_fold >= fold:
            print("Training fold: ", n_fold)
            x_val = list(np.array(x_train)[val_indices])
            y_val = list(np.array(y_train)[val_indices])

            x_train_spl = list(np.array(x_train)[train_indices])
            y_train_spl = list(np.array(y_train)[train_indices])

            model = BiLSTMCRF(char_vocab_size=p.char_vocab_size,
                              word_vocab_size=p.word_vocab_size,
                              num_labels=p.label_size,
                              word_embedding_dim=1200,
                              char_embedding_dim=50,
                              word_lstm_size=300,
                              char_lstm_size=300,
                              fc_dim=50,
                              dropout=0.5,
                              embeddings=embeddings,
                              use_char=True,
                              use_crf=True)

            opt = Adam(lr=0.001)
            model, loss = model.build()
            model.compile(loss=loss,
                          optimizer=opt,
                          metrics=[crf_viterbi_accuracy])

            es = EarlyStopping(monitor='val_crf_viterbi_accuracy',
                               patience=3,
                               verbose=1,
                               mode='max',
                               restore_best_weights=True)

            rlr = ReduceLROnPlateau(monitor='val_crf_viterbi_accuracy',
                                    factor=0.2,
                                    patience=2,
                                    verbose=1,
                                    mode='max')

            callbacks = [es, rlr]

            train_seq = NERSequence(x_train_spl, y_train_spl,
                                    config.batch_size, p.transform)

            if x_val and y_val:
                valid_seq = NERSequence(x_val, y_val, config.batch_size,
                                        p.transform)
                f1 = F1score(valid_seq, preprocessor=p, fold=n_fold)
                callbacks.append(f1)

            model.fit_generator(generator=train_seq,
                                validation_data=valid_seq,
                                epochs=config.nepochs,
                                callbacks=callbacks,
                                verbose=True,
                                shuffle=True,
                                use_multiprocessing=True,
                                workers=12)

            p.save('../models/best_transform.it')
            model.load_weights('../models/best_model_' + str(n_fold) + '.h5')
            predict(model, p, x_test, n_fold)