Exemple #1
0
    def __init__(self):
        self.original_root = "../../saved_original_for_generator/"
        self.data_pair1_root = "../../saved_pair1/"
        self.data_pair2_root = "../../saved_pair2/"
        self.data_mat_root = "../../saved_matrix/"
        self.data_mat_root_origin = "../../saved_matrix_unprocessed/"
        self.data_signal_root = "../../saved_stastics_for_generator/"
        # noise type
        self.noise_selector = [
            'gauss_noise', 'gauss_noise', 'gauss_noise', 'gauss_noise'
        ]
        self.save_matlab_root = "../../saved_matlab/"
        self.self_check_path_create(self.save_matlab_root)
        self.H = 1024
        self.W = 832
        self.matlab = Save_Signal_matlab()
        # read the signals  just use the existing path
        self.saved_stastics = MY_ANALYSIS()
        self.saved_stastics.all_statics_dir = os.path.join(
            self.data_signal_root, 'signals.pkl')
        self.shift_predictor = Shift_Predict()
        self.path_DS = self.saved_stastics.read_my_signal_results()
        self.path_DS.all_statics_dir = self.saved_stastics.all_statics_dir

        if visdom_show_flag == True:
            self.vis_ploter = VisdomLinePlotter()
Exemple #2
0
#GPU acceleration
from cost_matrix import Window_LEN
from analy_visdom import VisdomLinePlotter
#from numba import vectorize
#from numba import jit
import pickle
from enum import Enum
Save_signal_flag = True
Visidom_flag = False
display_flag = False

all_statics_dir = os.path.join(save_dir_analys, 'signals.pkl')
labels = ('mean path error', 'path cost', 'additional kp', 'additional ki')

if (Visidom_flag == True):
    plotter = VisdomLinePlotter(env_name='Tutorial Plots')


    # this num is speccial for One -D signal
class Save_signal_enum(Enum):
    image_iD = 0
    mean_path_error = 1
    path_cost = 2
    additional_kp = 3
    additional_ki = 4


class MY_ANALYSIS(object):
    def __init__(self):

        #self.signal_label=displayed_labels
Exemple #3
0
import imagenet
from analy import MY_ANALYSIS
from analy import Save_signal_enum
import cv2
import numpy
from image_trans import BaseTransform  
import os
from dataset_shifting import myDataloader_for_shift,Batch_size,Resample_size, Path_length, Mat_size,Resample_size2
from dataset_shifting import Original_window_Len
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Switch control for the Visdom or Not
Visdom_flag  = False 

if Visdom_flag == True:
    from analy_visdom import VisdomLinePlotter
    plotter = VisdomLinePlotter(env_name='path finding training Plots')



from scipy import signal 
Matrix_dir =  "..\\dataset\\CostMatrix\\1\\"
Save_pic_dir = '..\\DeepPathFinding_Version2\\out\\'
opt = arg_parse.opt
opt.cuda = True
# check the cuda device 
print(torch.cuda.current_device())
print(torch.cuda.device(0))
print(torch.cuda.device_count())
print(torch.cuda.get_device_name(0))
print(torch.cuda.is_available())
dataroot = "..\\dataset\\CostMatrix\\"
Exemple #4
0
class DATA_Generator(object):
    def __init__(self):
        self.original_root = "../../saved_original_for_generator/"
        self.data_pair1_root = "../../saved_pair1/"
        self.data_pair2_root = "../../saved_pair2/"
        self.data_mat_root = "../../saved_matrix/"
        self.data_mat_root_origin = "../../saved_matrix_unprocessed/"
        self.data_signal_root = "../../saved_stastics_for_generator/"
        # noise type
        self.noise_selector = [
            'gauss_noise', 'gauss_noise', 'gauss_noise', 'gauss_noise'
        ]
        self.save_matlab_root = "../../saved_matlab/"
        self.self_check_path_create(self.save_matlab_root)
        self.H = 1024
        self.W = 832
        self.matlab = Save_Signal_matlab()
        # read the signals  just use the existing path
        self.saved_stastics = MY_ANALYSIS()
        self.saved_stastics.all_statics_dir = os.path.join(
            self.data_signal_root, 'signals.pkl')
        self.shift_predictor = Shift_Predict()
        self.path_DS = self.saved_stastics.read_my_signal_results()
        self.path_DS.all_statics_dir = self.saved_stastics.all_statics_dir

        if visdom_show_flag == True:
            self.vis_ploter = VisdomLinePlotter()

    # if there is no path, generate thsi path
    def self_check_path_create(self, directory):
        try:
            os.stat(directory)
        except:
            os.mkdir(directory)

# read the original signal and then close the startign with the end

    def close_the_origin_signal(self):
        read_id = 0  # read pointer initialization
        while (1):

            OriginalpathDirlist = os.listdir(self.original_root)  #
            #

            #read the path and Image number from the signal file
            #get the Id of image which should be poibnt to

            #get the path
            path = self.path_DS.path_saving[read_id, :]
            path_l = len(path)
            long_path = np.append(path, path, axis=0)
            long_path = np.append(long_path, path, axis=0)
            #long_path = np.append(path[::-1],path,axis=0)
            #long_path = np.append(long_path,path[::-1],axis=0)
            long_path = gaussian_filter1d(long_path,
                                          5)  # the fileter parameters is 5
            path_p = long_path[path_l:2 * path_l]

            #change the signal too
            self.path_DS.path_saving[read_id, :] = path_p

            self.path_DS.save()

            ## validation
            #steam[Len_steam-1,:,:]  = original_IMG  # un-correct
            #steam[Len_steam-2,:,:]  = Shifted_IMG  # correct
            #Costmatrix,shift_used = COSTMtrix.matrix_cal_corre_full_version3_2GPU(original_IMG,Shifted_IMG,0)
            ##Costmatrix  = myfilter.gauss_filter_s (Costmatrix) # smooth matrix
            #show1 =  Costmatrix
            #for i in range ( len(path)):
            #    show1[int(path[i]),i]=254
            #cv2.imwrite(self.data_mat_root  + str(Image_ID) +".jpg", show1)

            print("[%s]   is processed. test point time is [%f] " %
                  (read_id, 0.1))

            read_id += 1
        pass

    def add_lines_to_matrix(self, matrix):
        value = 128
        H, W = matrix.shape
        line_positions = np.arange(0, W - 2 * H, H)
        for lines in line_positions:
            for i in np.arange(0, H):
                matrix[i, lines + i] = value
                matrix[i, lines + i + 1] = value
                matrix[i, lines + i + 3] = value

        return matrix

    def random_min_clip_by_row(self, min1, min2, mat):
        rand = np.random.random_sample()
        rand = rand * (min2 - min1) + min1
        H, W = mat.shape
        for i in np.arange(W):
            rand = np.random.random_sample()
            rand = rand * (min2 - min1) + min1
            mat[:, i] = np.clip(mat[:, i], rand, 254)
        return mat

    def noisy(self, noise_typ, image):
        if (noise_typ == "none"):
            return image
        if noise_typ == "gauss_noise":
            row, col = image.shape
            mean = 0
            var = 15
            sigma = var**0.5
            gauss = np.random.normal(mean, sigma, (row, col))
            gauss = gauss.reshape(row, col)
            noisy = image + gauss
            return np.clip(noisy, 0, 254)
        elif noise_typ == 's&p':
            row, col = image.shape
            s_vs_p = 0.5
            amount = 0.004
            out = np.copy(image)
            # Salt mode
            num_salt = np.ceil(amount * image.size * s_vs_p)
            coords = [
                np.random.randint(0, i - 1, int(num_salt)) for i in image.shape
            ]
            out[coords] = 1

            # Pepper mode
            num_pepper = np.ceil(amount * image.size * (1. - s_vs_p))
            coords = [
                np.random.randint(0, i - 1, int(num_pepper))
                for i in image.shape
            ]
            out[coords] = 0
            return np.clip(out, 0, 254)
        elif noise_typ == 'poisson':
            vals = len(np.unique(image))
            vals = 2**np.ceil(np.log2(vals))
            noisy = np.random.poisson(image * vals) / float(vals)
            return np.clip(noisy, 0, 254)
        elif noise_typ == 'speckle':
            row, col = image.shape
            gauss = np.random.randn(row, col)
            gauss = gauss.reshape(row, col)
            noisy = image + image * gauss
            return np.clip(noisy, 0, 254)

    #the  validation functionfor check the matrix and can also be used for validate the correction result
    def validation_shift(self, original_IMG, Shifted_IMG, path, Image_ID):
        Costmatrix, shift_used = COSTMtrix.matrix_cal_corre_full_version3_2GPU(
            original_IMG, Shifted_IMG, 0)
        if Clip_matrix_flag == True:
            #Costmatrix = np.clip(Costmatrix, 20,254)
            Costmatrix = self.random_min_clip_by_row(5, 30, Costmatrix)
        Shifted_IMG2 = Shifted_IMG
        shift = self.shift_predictor.predict(original_IMG, Shifted_IMG,
                                             Shifted_IMG2)
        path_deep = shift + path * 0

        ##middle_point  =  PATH.calculate_ave_mid(mat)
        #path1,path_cost1=PATH.search_a_path(mat,start_point) # get the path and average cost of the path
        show1 = np.zeros((Costmatrix.shape[0], Costmatrix.shape[1], 3))
        cv2.imwrite(self.data_mat_root_origin + str(Image_ID) + ".jpg", show1)
        show1[:, :, 0] = Costmatrix
        show1[:, :, 1] = Costmatrix
        show1[:, :, 2] = Costmatrix

        for i in range(len(path)):
            painter = min(path[i], Window_LEN - 1)
            #painter2= min(path_tradition[i],Window_LEN-1)
            painter3 = min(path_deep[i], Window_LEN - 1)
            show1[int(painter), i, :] = [255, 255, 255]
            #show1[int(painter2),i,:]=[254,0,0]
            show1[int(painter3), i, :] = [0, 0, 254]
        # save the  matrix to fil dir
        cv2.imwrite(self.data_mat_root + str(Image_ID) + ".jpg", show1)

    def validation(self, original_IMG, Shifted_IMG, path, Image_ID):
        #Costmatrix,shift_used = COSTMtrix.matrix_cal_corre_full_version3_2GPU(original_IMG,Shifted_IMG,0)
        #Costmatrix,shift_used = COSTMtrix.matrix_cal_corre_full_version3_2GPU(original_IMG,Shifted_IMG,0)
        Costmatrix, shift_used = COSTMtrix.matrix_cal_corre_full_version3_2GPU(
            original_IMG, Shifted_IMG, 0)

        #Costmatrix=cv2.blur(Costmatrix,(5,5))
        Costmatrix = myfilter.gauss_filter_s(Costmatrix)  # smooth matrix
        # Costmatrix =cv2.GaussianBlur(Costmatrix,(5,5),0)
        # down sample the materix and up sample
        #Hm,Wm= Costmatrix.shape
        #Costmatrix = cv2.resize(Costmatrix, (int(Wm/2),int(Hm/2)), interpolation=cv2.INTER_LINEAR)
        #Costmatrix = cv2.resize(Costmatrix, (Wm,Hm), interpolation=cv2.INTER_LINEAR)

        if Clip_matrix_flag == True:
            Costmatrix = np.clip(Costmatrix, 20, 254)
            #Costmatrix=self.random_min_clip_by_row(5,30,Costmatrix)
        #Costmatrix = self.add_lines_to_matrix(Costmatrix)
        #Costmatrix=np.clip(Costmatrix, 20, 255)
        # Costmatrix  = myfilter.gauss_filter_s(Costmatrix) # smooth matrix
        #tradition way to find path

        ##middle_point  =  PATH.calculate_ave_mid(mat)
        #path1,path_cost1=PATH.search_a_path(mat,start_point) # get the path and average cost of the path
        show1 = np.zeros((Costmatrix.shape[0], Costmatrix.shape[1], 3))
        show1[:, :, 0] = Costmatrix
        show1[:, :, 1] = Costmatrix
        show1[:, :, 2] = Costmatrix

        for i in range(len(path)):
            painter = np.clip(path[i], 1, Window_LEN - 2)

            show1[int(painter), i, :] = show1[int(painter) - 1,
                                              i, :] = [254, 254, 254]
        if Show_nurd_compare == True:
            start_point = PATH.find_the_starting(
                Costmatrix)  # starting point for path searching

            path_tradition, pathcost1 = PATH.search_a_path(
                Costmatrix,
                start_point)  # get the path and average cost of the path
            #path_tradition=(path_tradition -Window_LEN/2)*  Down_sample_F2 +Window_LEN/2
            #path_deep,path_cost2=PATH.search_a_path_Deep_Mat2longpath(Costmatrix) # get the path and average cost of the path
            path_deep, path_cost2 = PATH.search_a_path_GPU(
                Costmatrix)  # get the path and average cost of the path
            #path_deep=(path_deep -Window_LEN/2)*  Down_sample_F2 +Window_LEN/2
            path_deep = gaussian_filter1d(path_deep, 3)  # smooth the path
            show1 = np.clip(show1, 1, 190)

            for i in range(len(path)):
                painter = np.clip(path[i], 1, Window_LEN - 2)

                show1[int(painter), i, :] = show1[int(painter) - 1,
                                                  i, :] = [254, 254, 254]
                painter2 = np.clip(path_tradition[i], 1, Window_LEN - 2)
                painter3 = np.clip(path_deep[i], 1, Window_LEN - 2)
                show1[int(painter2), i, :] = show1[int(painter2) - 1,
                                                   i, :] = [0, 254, 0]
                show1[int(painter3), i, :] = show1[int(painter3) - 1,
                                                   i, :] = [0, 0, 254]

        # save the  matrix to fil dir
        cv2.imwrite(self.data_mat_root_origin + str(Image_ID) + ".jpg",
                    Costmatrix)

        cv2.imwrite(self.data_mat_root + str(Image_ID) + ".jpg", show1)
        # show the signal comparison in visdom
        if visdom_show_flag == True:
            x = np.arange(0, len(path))
            self.vis_ploter.plot_multi_arrays_append(x,
                                                     path,
                                                     title_name=str(Image_ID),
                                                     legend='truth')
            self.vis_ploter.plot_multi_arrays_append(x,
                                                     path_deep,
                                                     title_name=str(Image_ID),
                                                     legend='Deep Learning')
            self.vis_ploter.plot_multi_arrays_append(x,
                                                     path_tradition,
                                                     title_name=str(Image_ID),
                                                     legend='Traditional')
        # save comparison signals to matlab
        if Save_matlab_flag == True:
            self.matlab.buffer_4(Image_ID, path, path_deep, path_tradition)
            self.matlab.save_mat()
            pass

    def generate_NURD(self):
        #read one from the original
        #random select one IMG frome the oringinal
        read_id = 0
        Len_steam = 5
        steam = np.zeros((Len_steam, self.H, self.W))  # create video buffer
        num_path, path_len = self.path_DS.path_saving.shape
        for read_id in range(num_path):
            OriginalpathDirlist = os.listdir(self.original_root)  #
            sample = random.sample(OriginalpathDirlist, 1)  #
            Sample_path = self.original_root + sample[0]
            original_IMG = cv2.imread(Sample_path)
            path = self.path_DS.path_saving[read_id, :]
            self.W = len(path)

            original_IMG = cv2.cvtColor(original_IMG, cv2.COLOR_BGR2GRAY)
            original_IMG = cv2.resize(original_IMG, (self.W, self.H),
                                      interpolation=cv2.INTER_AREA)

            #read the path and Image number from the signal file
            #get the Id of image which should be poibnt to
            Image_ID = int(
                self.path_DS.signals[Save_signal_enum.image_iD.value, read_id])
            #get the path
            #path =  signal.resample(path, self.W)#resample the path
            if NURD_remove_shift_flag == True:
                path = path - (np.mean(path) - Window_LEN / 2)
                #path= path*0+ int(Window_LEN/2 )
            Dice = int(np.random.random_sample() * 100)
            if Dice % 2 == 0 or Use_random_NURD == True:
                path = path * 0 + int(Window_LEN / 2)
                fact1 = int(np.random.random_sample() * 20) + 20
                fact2 = np.random.random_sample()
                random_NURD = np.random.random_sample(
                    fact1) * 20 - 10 + fact2 * 20 - 10

                random_NURD = signal.resample(random_NURD,
                                              self.W)  #resample the path
                #random_NURD   = np.random.random_sample(self.W)*30-10 + np.random.random_sample()*40-20
                random_NURD = gaussian_filter1d(random_NURD,
                                                5)  # smooth the path
                path = path + random_NURD
            Low_path = int(35 / Down_sample_F2)
            #Low_path =Low_path.astype(int)
            Downsample_bias = 35 - Low_path * Down_sample_F2

            path = np.clip(path, 0, Window_LEN - 1)

            # create the shifted image
            Shifted_IMG = VIDEO_PEOCESS.de_distortion(original_IMG, path,
                                                      Image_ID, 0)
            #path = path -0.5* Downsample_bias
            path = gaussian_filter1d(path, 3)  # smooth the path
            path = np.clip(path, 0, Window_LEN - 1)

            self.path_DS.path_saving[read_id, :] = path
            self.path_DS.save()
            if add_noise_flag == True:
                #original_IMG = Basic_Operator.add_speckle_or_not(original_IMG)
                #Shifted_IMG =  Basic_Operator.add_speckle_or_not(Shifted_IMG)
                noise_it = np.random.random_sample() * 100
                noise_type = str(self.noise_selector[int(noise_it) % 4])
                #noise_type = "gauss_noise"
                original_IMG = self.noisy(noise_type, original_IMG)
                noise_it = np.random.random_sample() * 100
                noise_type = str(self.noise_selector[int(noise_it) % 4])
                Shifted_IMG = self.noisy(noise_type, Shifted_IMG)

                #Shifted_IMG  =  self.noisy(noise_type,Shifted_IMG)

            # save all the result

            cv2.imwrite(self.data_pair1_root + str(Image_ID) + ".jpg",
                        original_IMG)
            cv2.imwrite(self.data_pair2_root + str(Image_ID) + ".jpg",
                        Shifted_IMG)
            ## validation
            #self.validation(original_IMG,Shifted_IMG,path,Image_ID)

            #steam[Len_steam-1,:,:]  = original_IMG  # un-correct
            #steam[Len_steam-2,:,:]  = Shifted_IMG  # correct
            #Costmatrix,shift_used = COSTMtrix.matrix_cal_corre_full_version3_2GPU(original_IMG,Shifted_IMG,0)
            #Costmatrix  = myfilter.gauss_filter_s (Costmatrix) # smooth matrix
            #show1 =  Costmatrix
            #for i in range ( len(path)):
            #    show1[int(path[i]),i]=254
            #cv2.imwrite(self.data_mat_root  + str(Image_ID) +".jpg", show1)

            print("[%s]   is processed. test point time is [%f] " %
                  (read_id, 0.1))

            #read_id +=1
    def generate_overall_shifting(self):
        #read one from the original
        #random select one IMG frome the oringinal
        read_id = 0
        Len_steam = 5
        #steam=np.zeros((Len_steam,self.H,self.W)) # create video buffer
        while (1):
            random_shifting = np.random.random_sample(
            ) * Overall_shiftting_WinLen
            #random_shifting = random.random() * Overall_shiftting_WinLen
            OriginalpathDirlist = os.listdir(self.original_root)  #
            sample = random.sample(OriginalpathDirlist, 1)  #
            Sample_path = self.original_root + sample[0]
            original_IMG = cv2.imread(Sample_path)
            original_IMG = cv2.cvtColor(original_IMG, cv2.COLOR_BGR2GRAY)
            original_IMG = cv2.resize(original_IMG, (self.W, self.H),
                                      interpolation=cv2.INTER_AREA)
            #original_IMG = cv2.resize(original_IMG, (self.W,self.H), interpolation=cv2.INTER_AREA)
            H, W = original_IMG.shape

            #read the path and Image number from the signal file
            #get the Id of image which should be poibnt to
            Image_ID = int(
                self.path_DS.signals[Save_signal_enum.image_iD.value, read_id])
            #get the path
            path = self.path_DS.path_saving[read_id, :]
            #change the signal too
            self.path_DS.path_saving[read_id, :] = path * 0 + random_shifting
            path = signal.resample(path,
                                   W) * 0 + random_shifting  #resample the path

            #resave the signal

            # create the shifted image
            Shifted_IMG = VIDEO_PEOCESS.de_distortion(original_IMG, path,
                                                      Image_ID, 0)
            # save all the result
            cv2.imwrite(self.data_pair1_root + str(Image_ID) + ".jpg",
                        original_IMG)
            cv2.imwrite(self.data_pair2_root + str(Image_ID) + ".jpg",
                        Shifted_IMG)
            self.path_DS.save()
            #self.validation_shift(original_IMG,Shifted_IMG,path,Image_ID)

            ## validation
            #steam[Len_steam-1,:,:]  = original_IMG  # un-correct
            #steam[Len_steam-2,:,:]  = Shifted_IMG  # correct
            #Costmatrix,shift_used = COSTMtrix.matrix_cal_corre_full_version3_2GPU(original_IMG,Shifted_IMG,0)
            ##Costmatrix  = myfilter.gauss_filter_s (Costmatrix) # smooth matrix
            #show1 =  Costmatrix
            #for i in range ( len(path)):
            #    show1[int(path[i]),i]=254
            #cv2.imwrite(self.data_mat_root  + str(Image_ID) +".jpg", show1)

            print("[%s]   is processed. test point time is [%f] " %
                  (read_id, 0.1))

            read_id += 1

    # generate the   OCT iamge with combination of NURD and group shifting
    def generate_NURD_overall_shifting(self):
        #read one from the original
        #random select one IMG frome the oringinal
        read_id = 0  # read pointer initialization
        Len_steam = 5  # create the buffer for validation
        steam = np.zeros((Len_steam, self.H, self.W))  # create video buffer
        growing = 0
        while (1):
            #list all the picture for video generating, ensure the original folder has only one image
            OriginalpathDirlist = os.listdir(self.original_root)
            sample = random.sample(OriginalpathDirlist,
                                   1)  #  ramdom choose the name in folder list
            Sample_path = self.original_root + sample[
                0]  # create the reading path this radom picture
            original_IMG = cv2.imread(Sample_path)  # get this image
            original_IMG = cv2.cvtColor(original_IMG,
                                        cv2.COLOR_BGR2GRAY)  # to gray
            original_IMG = cv2.resize(original_IMG, (self.W, self.H),
                                      interpolation=cv2.INTER_LINEAR)

            #read the path and Image number from the signal file
            #get the Id of image which should be poibnt to
            Image_ID = int(
                self.path_DS.signals[Save_signal_enum.image_iD.value, read_id])
            #get the path
            path = self.path_DS.path_saving[read_id, :]
            path = signal.resample(path, self.W)  #resample the path
            if NURD_remove_shift_flag == True:
                path = path - (np.mean(path) - Window_LEN / 2)
                #path= path*0+ int(Window_LEN/2 )
            Dice = int(np.random.random_sample() * 100)
            if Dice % 2 == 0 or Use_random_NURD == True:
                path = path * 0 + int(Window_LEN / 2)
                fact1 = int(np.random.random_sample() * 50) + 20
                fact2 = np.random.random_sample()
                random_NURD = np.random.random_sample(fact1) * 30 - 15

                random_NURD = signal.resample(random_NURD,
                                              self.W)  #resample the path
                #random_NURD   = np.random.random_sample(self.W)*30-10 + np.random.random_sample()*40-20
                random_NURD = gaussian_filter1d(random_NURD,
                                                10)  # smooth the path
                path = path + random_NURD

            #   exragene for diaplay
            #path = (path -np.mean(path))*0.6+np.mean(path)
            #overall_shifting = Image_ID
            #overall_shifting = min(overall_shifting,self.W/2) # limit the shifting here, maybe half the lenghth is sufficient  for the combination
            #overall_shifting = min(overall_shifting,self.W/2) # limit the shifting here, maybe half the lenghth is sufficient  for the combination
            random_shifting = np.random.random_sample(
            ) * Overall_shiftting_WinLen / 2

            #Combine the overall shifting with NURD

            #path = path  + overall_shifting
            path = path + random_shifting

            # create the shifted image
            Shifted_IMG = VIDEO_PEOCESS.de_distortion(original_IMG, path,
                                                      Image_ID, 0)
            #modify for training ground trueth
            self.path_DS.path_saving[read_id, :] = self.path_DS.path_saving[
                read_id, :] * 0 + random_shifting
            self.path_DS.save()

            # add noise to image pair for validation
            if add_noise_flag == True:
                noise_type = str(self.noise_selector[int(Image_ID) % 4])
                #noise_type = "gauss_noise"
                original_IMG = self.noisy(noise_type, original_IMG)
                Shifted_IMG = self.noisy(noise_type, Shifted_IMG)
            if Image_ID < 100:
                grower = +np.random.random_sample() * np.random.random_sample(
                ) * 2
            else:
                grower = +np.random.random_sample() * np.random.random_sample(
                ) * 1
            growing += grower
            # addistional shift
            Shifted_IMG = np.roll(Shifted_IMG, int(growing), axis=1)

            # save all the result
            cv2.imwrite(self.data_pair1_root + str(Image_ID) + ".jpg",
                        original_IMG)
            cv2.imwrite(self.data_pair2_root + str(Image_ID) + ".jpg",
                        Shifted_IMG)

            # save generate information: the NURD and shift used for generating img pair to matlab
            if Save_matlab_flag == True:
                self.matlab.buffer_overall_shift_NURD(Image_ID,
                                                      overall_shifting, path)
                self.matlab.save_mat_infor_of_over_allshift_with_NURD()
                self.matlab.save_pkl_infor_of_over_allshift_with_NURD()
                pass
            ## validation
            if validation_flag == True:
                self.validation_shift(original_IMG, Shifted_IMG, path,
                                      Image_ID)

            #self.validation(original_IMG,Shifted_IMG,path,Image_ID)

            #steam[Len_steam-1,:,:]  = original_IMG  # un-correct
            #steam[Len_steam-2,:,:]  = Shifted_IMG  # correct
            #Costmatrix,shift_used = COSTMtrix.matrix_cal_corre_full_version3_2GPU(original_IMG,Shifted_IMG,0)
            #Costmatrix  = myfilter.gauss_filter_s (Costmatrix) # smooth matrix
            #show1 =  Costmatrix
            #for i in range ( len(path)):
            #    show1[int(path[i]),i]=254
            #cv2.imwrite(self.data_mat_root  + str(Image_ID) +".jpg", show1)

            print("[%s]   is processed. test point time is [%f] " %
                  (read_id, 0.1))

            read_id += 1
from analy import MY_ANALYSIS
from analy import Save_signal_enum
import cv2
import numpy
from image_trans import BaseTransform
from generator_contour import Generator_Contour, Save_Contour_pkl, Communicate

import os
from dataset_layers import myDataloader, Batch_size, Resample_size, Path_length
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Switch control for the Visdom or Not
Visdom_flag = True
Display_fig_flag = True
if Visdom_flag == True:
    from analy_visdom import VisdomLinePlotter
    plotter = VisdomLinePlotter(env_name='path finding training Plots')

pth_save_dir = "../out/deep_contour/"

if not os.path.exists(pth_save_dir):
    os.makedirs(pth_save_dir)
from scipy import signal
Matrix_dir = "../dataset/CostMatrix/1/"
Save_pic_dir = '../DeepPathFinding/out/'
opt = arg_parse.opt
opt.cuda = True
# check the cuda device
print(torch.cuda.current_device())
print(torch.cuda.device(0))
print(torch.cuda.device_count())
print(torch.cuda.get_device_name(0))
import os
from dataset_sheath import myDataloader,Batch_size,Resample_size, Path_length
from deploy.basic_trans import Basic_oper

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Switch control for the Visdom or Not
Visdom_flag  = True 
OLG_flag = False
Hybrid_OLG = False
validation_flag = False
infinite_save_id =0
Display_fig_flag = True
Continue_flag = True
if Visdom_flag == True:
    from analy_visdom import VisdomLinePlotter
    plotter = VisdomLinePlotter(env_name='path finding training Plots')


pth_save_dir = "../out/sheathCGAN_coordinates3/"
#pth_save_dir = "../out/deep_layers/"

if not os.path.exists(pth_save_dir):
    os.makedirs(pth_save_dir)
from scipy import signal 
Matrix_dir =  "../dataset/CostMatrix/1/"
Save_pic_dir = '../DeepPathFinding/out/'
opt = arg_parse.opt
opt.cuda = True
# check the cuda device 
print(torch.cuda.current_device())
print(torch.cuda.device(0))
Exemple #7
0
from scipy import signal
from scipy.signal import find_peaks
from scipy.ndimage import gaussian_filter1d
from basic_trans import Basic_oper

import os
from dataset_full_path import myDataloader, Batch_size, Resample_size, Path_length
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Switch control for the Visdom or Not
Visdom_flag = False
Display_fig_flag = True
Display_sig_flag = False

if Visdom_flag == True:
    from analy_visdom import VisdomLinePlotter
    plotter = VisdomLinePlotter(env_name='path finding training Plots')

validate_dir = "D:/PhD/trying/tradition_method/OCT/contour_vali/"
pth_save_dir = "../out/deep_contour/"

if not os.path.exists(pth_save_dir):
    os.makedirs(pth_save_dir)
from scipy import signal
Matrix_dir = "../dataset/CostMatrix/1/"
Save_pic_dir = '../DeepPathFinding/out/'
opt = arg_parse.opt
opt.cuda = True
# check the cuda device
print(torch.cuda.current_device())
print(torch.cuda.device(0))
print(torch.cuda.device_count())