#filenames = glob('./matchup_synop_radval_npp.txt')
    filenames = glob('./matchup_synop_all_npp.txt')
    this = MatchupAnalysis(mtype='synop')
    #this = MatchupAnalysis(mtype='point')
    this.get_results(filenames)
    res = this.data[np.isfinite(this.data['sat'])]

    # Illumination filtering:
    # res = sunz_filter(res, [0, 80])  # Daytime
    # res = sunz_filter(res, [90, 180])  # Night
    # res = sunz_filter(res, [80, 90])  # Twilight

    hist1d_plot(res, 'sat', 'PPS cloud cover', color='blue')

    #synop_validation(res, './ppsval_nightime.txt')
    synop_validation(res, './ppsval.txt')

    x = res.date + res.delta_t.apply(lambda d: timedelta(minutes=d))

    startdate = x.min()
    enddate = x.max()
    mydate = startdate
    delta_t = timedelta(minutes=60 * 24 * 10)  # 10 days
    datelist = []
    frequency = []
    while mydate < enddate:
        mydate = mydate + delta_t
        a = np.where(np.logical_and(x.astype(datetime).values < mydate,
                                    x.astype(datetime).values > mydate - delta_t),
                     1, 0)
        frequency.append(np.repeat(a, a).sum())
    r13 = np.array(res.loc[res.index, 'r13'].tolist())
    ciwv = np.array(res.loc[res.index, 'ciwv'].tolist())
    mask = np.logical_or(
        nodata, np.logical_or(cloudy == False, ppsclear == False))
    r13 = np.ma.masked_array(r13, mask=mask)
    ciwv = np.ma.masked_array(ciwv, mask=mask)
    y = r13
    x = ciwv

    plt.hexbin(x, y, cmap=mycmap)
    plt.axis([xmin, xmax, ymin, ymax])
    plt.title('PPS clear and Synop cloudy')
    plt.xlabel('ciwv')
    plt.ylabel('r13')
    plt.ylim(ymax=ymax)
    cb = plt.colorbar()
    cb.set_label('N')

    plt.savefig(plotfile)
    # plt.show()

    idx = res[res['r13'] > 0.5].index
    idx2 = res[res['ciwv'] > 4.0].index
    idx3 = res[res['sat'] >= 0].index
    index = [x for x in idx if x in idx2]
    index = [x for x in index if x in idx3]
    save_pps = res.loc[index, 'sat']

    res.loc[res[res['r13'] > 0.5].index, 'sat'] = 1
    synop_validation(res, './ppsval_daytime_13boost.txt')
    r13 = np.array(res.loc[res.index, 'r13'].tolist())
    ciwv = np.array(res.loc[res.index, 'ciwv'].tolist())
    mask = np.logical_or(nodata,
                         np.logical_or(cloudy == False, ppsclear == False))
    r13 = np.ma.masked_array(r13, mask=mask)
    ciwv = np.ma.masked_array(ciwv, mask=mask)
    y = r13
    x = ciwv

    plt.hexbin(x, y, cmap=mycmap)
    plt.axis([xmin, xmax, ymin, ymax])
    plt.title('PPS clear and Synop cloudy')
    plt.xlabel('ciwv')
    plt.ylabel('r13')
    plt.ylim(ymax=ymax)
    cb = plt.colorbar()
    cb.set_label('N')

    plt.savefig(plotfile)
    # plt.show()

    idx = res[res['r13'] > 0.5].index
    idx2 = res[res['ciwv'] > 4.0].index
    idx3 = res[res['sat'] >= 0].index
    index = [x for x in idx if x in idx2]
    index = [x for x in index if x in idx3]
    save_pps = res.loc[index, 'sat']

    res.loc[res[res['r13'] > 0.5].index, 'sat'] = 1
    synop_validation(res, './ppsval_daytime_13boost.txt')
    #filenames = glob('./matchup_synop_radval_npp.txt')
    filenames = glob('./matchup_synop_all_npp.txt')
    this = MatchupAnalysis(mtype='synop')
    #this = MatchupAnalysis(mtype='point')
    this.get_results(filenames)
    res = this.data[np.isfinite(this.data['sat'])]

    # Illumination filtering:
    # res = sunz_filter(res, [0, 80])  # Daytime
    # res = sunz_filter(res, [90, 180])  # Night
    # res = sunz_filter(res, [80, 90])  # Twilight

    hist1d_plot(res, 'sat', 'PPS cloud cover', color='blue')

    #synop_validation(res, './ppsval_nightime.txt')
    synop_validation(res, './ppsval.txt')

    x = res.date + res.delta_t.apply(lambda d: timedelta(minutes=d))

    startdate = x.min()
    enddate = x.max()
    mydate = startdate
    delta_t = timedelta(minutes=60 * 24 * 10)  # 10 days
    datelist = []
    frequency = []
    while mydate < enddate:
        mydate = mydate + delta_t
        a = np.where(
            np.logical_and(
                x.astype(datetime).values < mydate,
                x.astype(datetime).values > mydate - delta_t), 1, 0)