def main(args): db = args[0] date1 = args[1] date2 = args[2] date3 = args[3] k = int(args[4]) basename = args[5] reader = DBReader(db) print("Getting uid") uid = reader.uid() print("Getting all the feature graphs") feature_graphs = graphutils.get_feat_graphs(db, uid, None, date2) print("Getting Gcollab_delta graph") Gcollab_delta = graphutils.get_collab_graph(db, uid, date1, date2) Gcollab_base = graphutils.get_collab_graph(db, uid, date3, date1) base_graphs = graphutils.get_base_dict(Gcollab_base, feature_graphs) graphutils.print_stats(base_graphs) graphutils.print_graph_stats("Gcollab_delta", Gcollab_delta) filepath = os.path.join(LEARNING_ROOT, basename + ".mat") features_matrix_name = "%s_%s" % (basename, FEATURES) labels_matrix_name = "%s_%s" % (basename, LABELS) features = consolidateFeatures.consolidate_features_add( base_graphs, k, Gcollab_delta) #features = consolidateFeatures.consolidate_features(base_graphs, Gcollab_delta, k) labels = consolidateFeatures.consolidate_labels(features, Gcollab_delta) np_train, np_output = interface.matwrapTrain(features, labels) interface.writeTrain(np_train, np_output, filepath, features_matrix_name, labels_matrix_name) # Add learning root to mlab path so that all .m functions are available as mlab attributes mlab.path(mlab.path(), LEARNING_ROOT) mlab.training(np_train, np_output)
def main(args): db = args[0] date1 = args[1] date2 = args[2] date3 = args[3] k = int(args[4]) basename = args[5] reader = DBReader(db) print("Getting uid") uid = reader.uid() print("Getting all the feature graphs") feature_graphs = graphutils.get_feat_graphs(db, uid, None, date2) print("Getting Gcollab_delta graph") Gcollab_delta = graphutils.get_collab_graph(db, uid, date1, date2) Gcollab_base = graphutils.get_collab_graph(db, uid, date3, date1) base_graphs = graphutils.get_base_dict(Gcollab_base, feature_graphs) graphutils.print_stats(base_graphs) graphutils.print_graph_stats("Gcollab_delta", Gcollab_delta) filepath = os.path.join(LEARNING_ROOT, basename + ".mat") features_matrix_name = "%s_%s"%(basename, FEATURES) labels_matrix_name = "%s_%s"%(basename, LABELS) features = consolidateFeatures.consolidate_features_add(base_graphs, k, Gcollab_delta) #features = consolidateFeatures.consolidate_features(base_graphs, Gcollab_delta, k) labels = consolidateFeatures.consolidate_labels(features, Gcollab_delta) np_train, np_output = interface.matwrapTrain(features, labels) interface.writeTrain(np_train, np_output, filepath, features_matrix_name, labels_matrix_name) # Add learning root to mlab path so that all .m functions are available as mlab attributes mlab.path(mlab.path(), LEARNING_ROOT) mlab.training(np_train, np_output)
import path from db.interface import * from analysis import graphutils import utils db = utils.get_small_db() reader = DBReader(db) uid = reader.uid() rowid = uid.values()[0] print reader.get_users([rowid, rowid]) Gcollab = graphutils.get_collab_graph(db, uid) feature_graphs = graphutils.get_feat_graphs(db, uid) base_graphs = graphutils.get_base_dict(Gcollab, feature_graphs) graphutils.print_stats(base_graphs)