Exemple #1
0
    def __call__(self, x, is_training=False):

        x = self.st1_1(x, is_training)
        x = self.st1_2(x, is_training)
        x = maxpool2d(x, 2, 2)

        x = self.st2_1(x, is_training)
        x = self.st2_2(x, is_training)
        x = maxpool2d(x, 2, 2)

        x = self.st3_1(x, is_training)
        x = self.st3_2(x, is_training)
        x = self.st3_3(x, is_training)
        x = maxpool2d(x, 2, 2)

        x = self.st4_1(x, is_training)
        x = self.st4_2(x, is_training)
        x = self.st4_3(x, is_training)
        x = maxpool2d(x, 2, 2)

        x = self.st5_1(x, is_training)
        x = self.st5_2(x, is_training)
        x = self.st5_3(x, is_training)
        x = maxpool2d(x, 2, 2)

        return x
Exemple #2
0
    def __call__(self, x, is_training=False): 

        x = self.c1( x, is_training )
        x = self.c2( x, is_training )
        x = self.c3( x, is_training )

        x1 = self.c4( x, is_training )
        x2 = maxpool2d( x, 2, 2, padding="VALID" )

        x = concat( [ x1, x2 ], axis = 3, name = "{}_concat1".format( self.name )  )

        x1 = self.c5_0( x, is_training )
        x2 = self.c6_0( x, is_training )

        x1 = self.c5_1( x1, is_training )
        x1 = self.c5_2( x1, is_training )
        x1 = self.c5_3( x1, is_training )

        x2 = self.c6_1( x2, is_training )

        x = concat( [ x1, x2 ], axis = 3, name = "{}_concat2".format( self.name )  )

        x1 = self.c7( x, is_training )
        x2 = maxpool2d( x, 2, 2, padding="VALID" )

        x = concat( [ x1, x2 ], axis = 3, name = "{}_concat3".format( self.name )  )
        
        print(x)            
        return x
Exemple #3
0
    def __call__(self, x, is_training=False):

        #===========ENTRY FLOW==============
        # Block 1
        x = self.b1c1(x, is_training)
        x = self.b1c2(x, is_training)
        res = self.b1r1(x, is_training)

        # Block 2
        x = self.b2c1(x, is_training)
        x = self.b2c2(x, is_training)
        x = maxpool2d(x, 3, 2)
        x = tf.add(x, res)
        res = self.b2r1(x, is_training)

        # Block 3
        x = self.act(x)
        x = self.b3c1(x, is_training)
        x = self.b3c2(x, is_training)
        x = maxpool2d(x, 3, 2)
        x = tf.add(x, res)
        res = self.b3r1(x, is_training)

        # Block 4
        x = self.act(x)
        x = self.b4c1(x, is_training)
        x = self.b4c2(x, is_training)
        x = maxpool2d(x, 3, 2)
        x = tf.add(x, res)

        #===========MIDDLE FLOW===============
        for i in range(8):
            res = x
            for n in self.block[i]:
                x = self.act(x)
                x = n(x, is_training)
            x = tf.add(x, res)

        #========EXIT FLOW============
        res = self.er0(x, is_training)

        x = self.act(x)
        x = self.ec0(x, is_training)
        x = self.ec1(x, is_training)
        x = maxpool2d(x, 3, 2)
        x = tf.add(x, res)

        x = self.ec2(x, is_training)
        x = self.ec3(x, is_training)

        print(x)
        return x
Exemple #4
0
    def __call__(self, x, is_training=False):

        # stage 1
        x = zero_padding2d(x, (4, 4))
        x = self.st1_c(x, is_training)
        x1 = maxpool2d(x, 2, 2, padding='VALID')

        # stage 2
        x = self.st2_b(x1, is_training)
        x = self.st2_i1(x, is_training)
        x2 = self.st2_i2(x, is_training)

        # stage 3
        x = self.st3_b(x2, is_training)
        x = self.st3_i1(x, is_training)
        x = self.st3_i2(x, is_training)
        x3 = self.st3_i3(x, is_training)

        # stage 4
        x = self.st4_b(x3, is_training)
        x = self.st4_i1(x, is_training)
        x = self.st4_i2(x, is_training)
        x = self.st4_i3(x, is_training)
        x = self.st4_i4(x, is_training)
        x4 = self.st4_i5(x, is_training)

        # stage 5
        x = self.st5_b(x4, is_training)
        x = self.st5_i1(x, is_training)
        x5 = self.st5_i2(x, is_training)

        return x1, x2, x3, x4, x5
Exemple #5
0
    def __call__(self, x, is_training=False):
        
        x0 = self.c0_0( x, is_training )
        x  = maxpool2d( x0, 2, 2 )

        x  = self.c1_0( x, is_training )
        x1 = self.c1_1( x, is_training )
        x  = maxpool2d( x1, 2, 2 )

        x  = self.c2_0( x, is_training )
        x2 = self.c2_1( x, is_training )
        x  = maxpool2d( x2, 2, 2 )

        x  = self.c3_0( x, is_training )
        x3 = self.c3_1( x, is_training )
        x  = maxpool2d( x3, 2, 2 )

        x  = self.c4_0( x, is_training )
        x4 = self.c4_1( x, is_training )
        x  = maxpool2d( x4, 2, 2 )

        x = self.c5_0( x, is_training )
        x = self.c5_1( x, is_training )

        x = self.d0_0( x, is_training )
        x = tf.concat( [ x, x4 ], axis = 3 )
        x = self.d0_1( x, is_training )

        x = self.d1_0( x, is_training )
        x = tf.concat( [ x, x3 ], axis = 3 )
        x = self.d1_1( x, is_training )

        x = self.d2_0( x, is_training )
        x = tf.concat( [ x, x2 ], axis = 3 )
        x = self.d2_1( x, is_training )

        x = self.d3_0( x, is_training )
        x = tf.concat( [ x, x1 ], axis = 3 )
        x = self.d3_1( x, is_training )

        x = self.d4_0( x, is_training )
        x = tf.concat( [ x, x0 ], axis = 3 )
        x = self.d4_1( x, is_training )
                
        print(x)            
        return x
        
Exemple #6
0
    def __call__(self, x, h, is_training=False):

        x, xu = self.blockx(x, is_training=is_training)
        h, hu = self.blockh(h, is_training=is_training)

        if not self.polling is None:
            x = maxpool2d(x, self.polling)
            h = maxpool2d(h, self.polling)

        x = flatten(x)
        h = flatten(h)
        xh = tf.concat([x, h], axis=1)

        m, mu = self.blockm(xh, is_training=is_training)

        print(m)
        if is_training:
            return x, h, m, (*xu, *hu, *mu)
        return x, h, m
Exemple #7
0
    def __call__(self, x, is_training=False):

        # stage 1
        x = zero_padding2d(x, (3, 3))
        x = self.st1_c(x, is_training)
        x = maxpool2d(x, 3, 2, padding='VALID')

        # stage 2
        x = self.st2_b(x, is_training)
        x = self.st2_i1(x, is_training)
        x = self.st2_i2(x, is_training)

        # stage 3
        x = self.st3_b(x, is_training)
        x = self.st3_i1(x, is_training)
        x = self.st3_i2(x, is_training)
        x = self.st3_i3(x, is_training)

        # stage 4
        x = self.st4_b(x, is_training)
        x = self.st4_i1(x, is_training)
        x = self.st4_i2(x, is_training)
        x = self.st4_i3(x, is_training)
        x = self.st4_i4(x, is_training)
        x = self.st4_i5(x, is_training)
        x = self.st4_i6(x, is_training)
        x = self.st4_i7(x, is_training)
        x = self.st4_i8(x, is_training)
        x = self.st4_i9(x, is_training)
        x = self.st4_i10(x, is_training)
        x = self.st4_i11(x, is_training)
        x = self.st4_i12(x, is_training)
        x = self.st4_i13(x, is_training)
        x = self.st4_i14(x, is_training)
        x = self.st4_i15(x, is_training)
        x = self.st4_i16(x, is_training)
        x = self.st4_i17(x, is_training)
        x = self.st4_i18(x, is_training)
        x = self.st4_i19(x, is_training)
        x = self.st4_i20(x, is_training)
        x = self.st4_i21(x, is_training)
        x = self.st4_i22(x, is_training)

        # stage 5
        x = self.st5_b(x, is_training)
        x = self.st5_i1(x, is_training)
        x = self.st5_i2(x, is_training)

        x = avgpool2d(x, 2, 2, padding='VALID')

        return x
Exemple #8
0
    def __call__(self, x, is_training=False): 

        x0 = maxpool2d( x, 3, 2, padding="SAME" )

        x1 = self.c0_0( x, is_training )
        x2 = self.c1_0( x, is_training )

        x2 = self.c1_1( x2, is_training )
        x2 = self.c1_2( x2, is_training )

        x = concat( [ x0, x1, x2 ], 3, name = "{}_concat".format( self.name )  )
        
        print(x)            
        return x
Exemple #9
0
    def __call__(self, x, is_training=False): 

        # Initial convolution
        x = self.c1( x, is_training )
        x = bn( x, is_training )
        x = self.act( x )
        x = maxpool2d( x, 3, 2 )

        # Add dense blocks
        for block_idx in range( self.nb_dense_block - 1 ):            
            x = self.d_blocks[block_idx]( x, is_training )
            # Add transition_block
            x = self.transition_block[block_idx]( x, is_training )
            x = self.sne[block_idx]( x, is_training )
        x = self.d_blocks[-1]( x, is_training )
        self.sne[-1]( x, is_training )

        x = bn( x, is_training )
        x = self.act( x )

        return x