Exemple #1
0
def mult_log_reg(tensor_in,
                 numclasses=None,
                 data=None,
                 dtype=tf.float32,
                 initrange=1e-10,
                 seed=None,
                 l2=0.0,
                 name='log_reg'):
    """
    Performs mulitnomial logistic regression forward pass. Weights and bias initialized to zeros.

    :param tensor_in: A tensor_ or placeholder_
    :param numclasses: For classificatio
    :param data: For shape inference.
    :param dtype: For :any:`weights` initialization.
    :param initrange: For :any:`weights` initialization.
    :param seed: For :any:`weights` initialization.
    :param l2: For :any:`weights` initialization.
    :param name: For `variable_scope`_
    :return:  A tensor shape=(tensor_in.shape[0], numclasses)
    """
    if data is not None:
        if type(data) is loader.HotIndex:
            numclasses = data.dim
        elif loader.is_one_hot(data):
            numclasses = data.shape[1]
        else:
            raise MissingShapeError('Can not infer shape from data: %s' % data)
    elif numclasses is None:
        raise MissingShapeError(
            'Can not infer shape. Need numclasses or data argument.')
    inshape = tensor_in.get_shape().as_list()
    W = weights('uniform', [inshape[1], numclasses],
                dtype=dtype,
                initrange=initrange,
                seed=seed,
                l2=l2,
                name=name + '_weights')
    b = weights('uniform', [numclasses],
                dtype=dtype,
                initrange=initrange,
                seed=seed,
                l2=l2,
                name=name + '_bias')
    tensor_out = tf.nn.softmax(tf.matmul(tensor_in, W) + b)
    return tensor_out
Exemple #2
0
def test_is_one_hot_true_sparse():
    w = sps.csr_matrix(np.array([[1, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]]))
    assert loader.is_one_hot(w)
Exemple #3
0
def test_is_one_hot_false3_dense():
    w = np.array([0, 0, 1])
    assert not loader.is_one_hot(w)
Exemple #4
0
def test_is_one_hot_false2_dense():
    w = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]])
    assert not loader.is_one_hot(w)
Exemple #5
0
def test_is_one_hot_false1_sparse():
    w = sps.csr_matrix(np.array([[5, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]]))
    assert not loader.is_one_hot(w)
Exemple #6
0
def test_is_one_hot_true_dense():
    w = np.array([[1, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]])
    assert loader.is_one_hot(w)