Exemple #1
0
 def test_nibabel(self):
     fn = ants.get_ants_data('mni')
     ants_img = ants.image_read(fn)
     nii_mni = nib.load(fn)
     ants_mni = ants_img.to_nibabel()
     self.assertTrue((ants_mni.get_qform() == nii_mni.get_qform()).all())
     temp = ants.from_nibabel(nii_mni)
     self.assertTrue(ants.image_physical_space_consistency(ants_img, temp))
Exemple #2
0
def read_nib(addr):
    # img = np.array(nib.load(addr).dataobj)
    img = nib.load(addr)
    ants_data = ants.from_nibabel(img)
    resampled = ants.resample_image(ants_data, (1.5, 1.5, 1.5)).numpy()  # Resample to 1.5mm3 resolution
    print("Resampled Size: ", resampled.shape)
    np_resampled_pad = np.pad(resampled, 100, 'constant', constant_values=resampled.min())
    # np_resampled_pad = np.pad(img, 100, 'constant', constant_values=img.min())
    return crop_center(np_resampled_pad, 256, 256, 400)
Exemple #3
0
def to_ants(image: Union[ArrayOrNifti, ants.ANTsImage]) -> ants.ANTsImage:
    if isinstance(image, ants.ANTsImage):
        ants_image = image
    elif isinstance(image, NiftiImage):
        ants_image = ants.from_nibabel(image)
    elif isinstance(image, Array):
        ants_image = ants.from_numpy(image)
    else:
        raise ValueError(
            "Provided image must be an ANTsImage, Nifti1Image, or np.ndarray."
            f" Got {type(image)}.")
    return ants_image
Exemple #4
0
 def __init__(
     self,
     template: Optional[NiftiImage] = None,
     type_of_transform: str = "Affine",
     interpolator: str = "bSpline",
     metric: str = "mattes",
     initial_rigid: bool = True,
 ):
     if template is None:
         logger.info("Using MNI (in RAS orientation) as template")
         standard_mni = ants.get_ants_data("mni")
         self.template = ants.image_read(standard_mni).reorient_image2(
             "RAS")
     else:
         logger.debug("Loading template")
         self.template = ants.from_nibabel(template)
     self.type_of_transform = type_of_transform
     self.interpolator = interpolator
     self.metric = metric
     self.initial_rigid = initial_rigid
def preprocess(
    image: NiftiImage,
    mask: Optional[NiftiImage] = None,
    resolution: Optional[Tuple[float, float, float]] = None,
    orientation: str = "RAS",
    n4_convergence_options: Optional[dict] = None,
    interp_type: str = "linear",
    second_n4_with_smoothed_mask: bool = True,
) -> Tuple[NiftiImage, NiftiImage]:
    """Preprocess an MR image

    Preprocess an MR image according to a simple scheme:
    1) N4 bias field correction
    2) resample to X mm x Y mm x Z mm
    3) reorient images to RAI

    Args:
        image: image to preprocess
        mask: mask covering the brain of image (none if already skull-stripped)
        resolution: resolution for resampling. None for no resampling.
        orientation: reorient the image according to this. See ANTsPy for details.
        n4_convergence_options: n4 processing options. See ANTsPy for details.
        interp_type: interpolation type for resampling
            choices: linear, nearest_neighbor, gaussian, windowed_sinc, bspline
        second_n4_with_smoothed_mask: do a second N4 with a smoothed mask
            often improves the bias field correction in the image

    Returns:
        preprocessed image and corresponding foreground mask
    """

    if n4_convergence_options is None:
        n4_convergence_options = {"iters": [200, 200, 200, 200], "tol": 1e-7}
    logger.debug(f"N4 Options are: {n4_convergence_options}")

    if isinstance(image, nib.Nifti1Image):
        image = ants.from_nibabel(image)
    if mask is not None:
        if isinstance(mask, nib.Nifti1Image):
            mask = ants.from_nibabel(mask)
    else:
        mask = image.get_mask()
    logger.debug("Starting bias field correction")
    image = ants.n4_bias_field_correction(image,
                                          convergence=n4_convergence_options)
    if second_n4_with_smoothed_mask:
        smoothed_mask = ants.smooth_image(mask, 1.0)
        logger.debug("Starting 2nd bias field correction")
        image = ants.n4_bias_field_correction(
            image,
            convergence=n4_convergence_options,
            weight_mask=smoothed_mask,
        )
    if resolution is not None:
        if resolution != mask.spacing:
            logger.debug(f"Resampling mask to {resolution}")
            mask = ants.resample_image(
                mask,
                resolution,
                use_voxels=False,
                interp_type=interp_type_dict["nearest_neighbor"],
            )
        if resolution != image.spacing:
            logger.debug(f"Resampling image to {resolution}")
            image = ants.resample_image(
                image,
                resolution,
                use_voxels=False,
                interp_type=interp_type_dict[interp_type],
            )
    image = image.reorient_image2(orientation)
    mask = mask.reorient_image2(orientation)
    image = image.to_nibabel()
    mask = mask.to_nibabel()
    return image, mask