Exemple #1
0
def test_dict_importer():
    """Dict Importer."""
    importer = DictImporter()
    exporter = DictExporter()
    refdata = {
        'id':
        'root',
        'children': [{
            'id': 'sub0',
            'children': [{
                'id': 'sub0B'
            }, {
                'id': 'sub0A'
            }]
        }, {
            'id':
            'sub1',
            'children': [{
                'id': 'sub1A'
            }, {
                'id': 'sub1B'
            }, {
                'id': 'sub1C',
                'children': [{
                    'id': 'sub1Ca'
                }]
            }]
        }]
    }
    data = deepcopy(refdata)
    root = importer.import_(data)
    eq_(data, refdata)
    eq_(exporter.export(root), data)
Exemple #2
0
    def generate_json(self):
        nested_dict = self.build()
        importer = DictImporter()
        tree = importer.import_(nested_dict)

        hr_entries = []
        for node in LevelOrderIter(tree):
            item = {
                'PreferredFirstName': getattr(node, 'PreferredFirstName'),
                'Preferred_Name_-_Last_Name': getattr(node, 'Preferred_Name_-_Last_Name'),
                'businessTitle': getattr(node, 'businessTitle'),
                'EmployeeID': getattr(node, 'EmployeeID'),
                'PrimaryWorkEmail': getattr(node, 'PrimaryWorkEmail'),
                'IsManager': len(node.children) > 0,
            }

            if node.parent:
                manager_first_name = getattr(node.parent, 'PreferredFirstName')
                manager_last_name = getattr(node.parent, 'Preferred_Name_-_Last_Name')
                manager = {
                    'WorkersManager': '{} {}'.format(manager_first_name, manager_last_name),
                    'WorkersManagersEmployeeID': getattr(node.parent, 'EmployeeID')
                }
                item.update(manager)

            hr_entries.append(item)

        hr_data = {
            'Report_Entry': hr_entries
        }

        return json.dumps(hr_data)
    def _prune_leaves(self, root_node) -> dict:
        """Prune all the leaves that does not have 'value' attribute in them.
        In other words, remove the leaves that user did not set in file.

        Parameters
        ----------
        root_node : dict
            Branch to be pruned.

        Returns
        -------
        dict
            Pruned branch.
        """
        importer = DictImporter()
        exporter = DictExporter()

        inptree = importer.import_(root_node)

        # keep checking for leaves without value attribute
        while True:
            all_has_value = all(
                hasattr(leaf, 'value') for leaf in inptree.leaves)

            if all_has_value:
                break

            for leaf in inptree.leaves:
                if not hasattr(leaf, 'value'):
                    # prune leaves without value attribute
                    leaf.parent = None

        return exporter.export(inptree)
Exemple #4
0
def intercept():
    """判断用户是否top_root"""
    # redis-cli
    rc = current_app.redis_cli
    root_data = json.loads(rc.hget(f"drp_relation_member_{g.user_id}", 0).decode())
    importer = DictImporter()
    root = importer.import_(root_data)
    return root.height
Exemple #5
0
 def sync_to_restore(self, opt_model):
     self.opt_model = opt_model
     if hasattr(self, 'root_node'):
         root_node_compressed = self.root_node
         importer = DictImporter()
         self.root_node = importer.import_(root_node_compressed)
         sync_part_tree_on_restore(self.opt_model.ele_model,
                                   self.opt_model.seq_model, self.root_node)
Exemple #6
0
    def get_path_descendants(path):
        """ Get the set of descendants for a tree like path dict.
        """

        importer = DictImporter()
        root = importer.import_(path)
        descendants = set(
            [descendant_node.name for descendant_node in root.descendants])
        return descendants
Exemple #7
0
 def load_tree(self, directory=None):
     data_path = (
         directory or '.'
     ) + '/nn_data/' + self.config.experiment_name + '/spectral_tree.dict'
     if os.path.exists(data_path):
         importer = DictImporter()
         with open(data_path, 'rb') as file:
             treedict = pickle.load(file)
             self.root = importer.import_(treedict)
     print(RenderTree(self.root).by_attr('id'))
Exemple #8
0
def path_differences(model, paths_labels, type_analysis='production'):
    """

    Parameters
    ----------
    model: PySB model
        Model used to do dominant path analysis
    paths_labels: dict
        Dictionary of pathways generated by dominant path analysis
    type_analysis: str
        Type of analysis used in the dominant path analysis.
        It can either be `production` or `consumption`

    Returns
    -------
    A pandas dataframe where the column names and row indices are the labels of the
    pathways and the cells contain the edges that are present in the
    row pathway index but not in the column pathway.
    """
    generate_equations(model)
    importer = DictImporter()
    path_edges = {}

    def find_numbers(dom_r_str):
        n = map(int, re.findall('\d+', dom_r_str))
        return n

    def nodenamefunc(node):
        node_idx = list(find_numbers(node.name))[0]
        node_sp = model.species[node_idx]
        node_name = parse_name(node_sp)
        return node_name

    def edgeattrfunc(node, child):
        return 'dir="back"'

    for keys, values in paths_labels.items():
        root = importer.import_(values)
        dot = DotExporter(root, graph='strict digraph', options=["rankdir=RL;"], nodenamefunc=nodenamefunc,
                          edgeattrfunc=edgeattrfunc)
        data = ''
        for line in dot:
            data += line
        pydot_graph = graph_from_dot_data(data)
        graph = from_pydot(pydot_graph[0])
        if type_analysis == 'production':
            graph = graph.reverse()
        edges = set(graph.edges())
        path_edges[keys] = edges

    path_diff = pd.DataFrame(index=paths_labels.keys(), columns=paths_labels.keys())
    for row in path_diff.columns:
        for col in path_diff.columns:
            path_diff.loc[row, col] = path_edges[row].difference(path_edges[col])
    return path_diff
Exemple #9
0
 def load_from_file(cls, file_path, game_def):
     """
     Creates a Tree from a file with the tree in json format
     Args:
         file_path: Path to the json file
     """
     with open(file_path) as feedsjson:
         tree_dic = json.load(feedsjson)
     importer = DictImporter()
     root = importer.import_(tree_dic['tree'])
     for n in PreOrderIter(root):
         n = cls.node_class.from_dic(n.name,game_def,tree_dic['main_player'],parent=n.parent,children=n.children)
     t = cls(root)
     return t
Exemple #10
0
    def render(self, reform):
        from anytree.importer import DictImporter
        from anytree import RenderTree

        if isinstance(reform, dict):
            reform = DeppReform.from_data(reform)

        importer = DictImporter()
        # tree_root = importer.import_(r['hierplane_tree']['root'])
        print([(w, h) for w, h in zip(reform.words, reform.heads)])
        tree_root = importer.import_(reform.tree['root'])
        tree = RenderTree(tree_root)
        for pre, fill, node in tree:
            print("%s%s: %s (%s)" % (pre, node.nodeType, node.word, ','.join(
                node.attributes).lower()))
Exemple #11
0
    def __init__(self, vectorifier=None):

        dict_importer = DictImporter(nodecls=Node)
        importer = JsonImporter(dictimporter=dict_importer)
        self.root = importer.import_(symptom_json)

        if vectorifier is not None:
            # normal mode, if it is None is eval mode
            self.vectorifier = vectorifier
            self.vector_dimension = vectorifier.d
            """
      if concept name vectors file not exists, create it
      """
            if vectorifier.internal_representation == "glove":
                if not os.path.isfile(COM.CSV_ST_CONCEPT_NAMES_GLOVE_PATH + \
                                      str(self.vector_dimension) + "d.csv"):
                    print(
                        "Concept names glove vectors file not found. \nComputing file..."
                    )
                    self.__save_csv_concept_name_glove_vectors()

                self.concept_name_vectors_df = pd.read_csv(COM.CSV_ST_CONCEPT_NAMES_GLOVE_PATH + \
                                                           str(self.vector_dimension) + "d.csv",
                                                           header=None)
            elif vectorifier.internal_representation == "bert":
                if not os.path.isfile(COM.CSV_ST_CONCEPT_NAMES_BERT_PATH + \
                                      COM.FILENAME_CSV_ST_CONCEPT_NAMES_BERT):
                    print(
                        "Concept names bert vectors file not found. \nComputing file..."
                    )
                    self.__save_csv_concept_name_bert_vectors()

                self.concept_name_vectors_df = pd.read_csv(COM.CSV_ST_CONCEPT_NAMES_BERT_PATH + \
                                                           COM.FILENAME_CSV_ST_CONCEPT_NAMES_BERT,
                                                           header=None)
Exemple #12
0
def get_childs(query_term="radiological finding"):
    tree = None
    s = {}
    path = root + '/Rx-thorax-automatic-captioning/' + filetree
    stream = open(path, "r")
    docs = yaml.load_all(stream, Loader=yaml.FullLoader)
    print("Starting to search " + query_term + " in the following trees:")
    for doc in docs:
        tree_root = DictImporter().import_(doc)
        print("\t" + tree_root.label)
        r = search.findall(tree_root, lambda node: node.label == query_term)
        if r:
            tree = RenderTree(r[0])
            for pre, _, node in tree:
                CUI = None
                try:
                    CUI = node.concept
                    m = re.search('\((\w+)\)', CUI)
                    if m:
                        CUI = m.group(0).strip('(').strip(')')
                        cui.add(CUI)
                except:
                    pass
                s[node.label] = CUI
    if tree:

        t = str(tree.by_attr(lambda n: n.label + '\n'))

        st.sidebar.markdown("## Tree of child terms")
        st.sidebar.markdown(t)

    return s, t
Exemple #13
0
    def load(self, dirname):
        importer = DictImporter()
        (self.tree, self.node_to_class, self.node_to_classes,
         self.class_maps) = load_tree(join(dirname, 'tree'))

        self.models = {}
        models_dirname = join(dirname, 'models')
        with open(join(models_dirname, 'models_fnames.yaml'),
                  'r',
                  encoding='utf-8') as file:
            models_dct = yaml_load(file)
        for node_id, fname in models_dct.items():
            model_path = join(models_dirname, fname)
            self.models[node_id] = load_model(model_path)

        self.encoders = {}
        encoders_dirname = join(dirname, 'encoders')
        with open(join(encoders_dirname, 'encoders_fnames.yaml'),
                  'r',
                  encoding='utf-8') as file:
            encoders_dct = yaml_load(file)
        for node_id, fname in encoders_dct.items():
            encoder_path = join(encoders_dirname, fname)
            self.encoders[node_id] = joblib_load(encoder_path)

        self._fitted = True
Exemple #14
0
def load_tree(dirname):
    importer = DictImporter()
    with open(join(dirname, 'tree.yaml'), 'r', encoding='utf-8') as file:
        tree = importer.import_(yaml_load(file))

    with open(join(dirname, 'node_to_classes.yaml'), 'r',
              encoding='utf-8') as file:
        node_to_classes = yaml_load(file)

    with open(join(dirname, 'node_to_class.yaml'), 'r',
              encoding='utf-8') as file:
        node_to_class = yaml_load(file)

    with open(join(dirname, 'class_maps.yaml'), 'r', encoding='utf-8') as file:
        class_maps = yaml_load(file)

    return tree, node_to_class, node_to_classes, class_maps
Exemple #15
0
    def undo(self):
        importer = DictImporter(nodecls=QAnyTreeItem)
        parent = getIndexFromLocations(self.indexLocations, self.model)
        parentItem = self.model.getItem(parent)

        self.result = self.model.beginInsertRows(parent, self.position,
                                                 self.position + self.rows - 1)
        for row, data in enumerate(self.data):
            print(data)
            item = importer.import_(data)

            # Reconstruct branch
            item.parent = parentItem
            parentItem.moveChild(parentItem.childCount() - 1,
                                 self.position + row)

        self.model.endInsertRows()
Exemple #16
0
def buildTreeCounts( ):
    stream = open("manual_review/trees.txt", "r")
    docs = yaml.load_all(stream)

    study_labels_file = 'manual_review/all_info_studies_labels.csv'
    path = root + '/Rx-thorax-automatic-captioning/' + study_labels_file
    all_studies_labels_DF = pd.read_csv(path, sep = ',' , header = 0)

    row_labels = all_studies_labels_DF.groupby('StudyID').head(1)
    row_labels['labels'] = row_labels['labels'].astype('str')
    pattern = re.compile('[^a-zA-Z,\s]+')
    row_labels['label_list'] = row_labels['labels'].apply(lambda r: set([item.strip() for item in pattern.sub('', r).split(",")]))


    study_localizations_count = 'manual_review/unique_localizations_28K.csv'
    study_labels_count = 'manual_review/unique_labels_28K.csv'
    path = root + '/Rx-thorax-automatic-captioning/' + study_labels_count
    study_labels_count_DF = pd.read_csv(path, sep = ',' ,names = ['label','counts'], dtype={'label': str, 'counts': np.int32})
    path = root + '/Rx-thorax-automatic-captioning/' + study_localizations_count
    study_localizations_count_DF = pd.read_csv(path, sep = ',' ,names = ['label','counts'], dtype={'label': str, 'counts': np.int32})
    study_labels_count_DF = pd.concat([study_labels_count_DF,study_localizations_count_DF], axis = 0)

    for doc in docs:
        tree_root = DictImporter().import_(doc)

        for pre, _, node in RenderTree(tree_root):
            try:
                if node.label == 'normal': #Normal if single label (studies with reports without pathological findings: [Normal + exclude], [Normal],  [Normal + Suboptimal]
                    s = {'normal','exclude','suboptimal study'}
                    node.study_counts = row_labels[row_labels['label_list'] <= s].shape[0]
                elif  node.label == 'exclude': #Exclude if single label (reports not informative, neither normal not pathological finding reported): [Exclude], [Exclude, suboptimal]
                    s = {'exclude','suboptimal study'}
                    node.study_counts = row_labels[row_labels['label_list'] <= s].shape[0]
                else:
                    node.study_counts = study_labels_count_DF.loc[study_labels_count_DF.label == node.label,'counts'].values[0]

            except:
                node.study_counts = 0

        with open("manual_review/tree_term_counts.txt", "a") as text_file:
            for pre, _, node in RenderTree(tree_root):
                node.study_node_counts = node.study_counts + sum(i.study_counts for i in node.descendants)
                print("%s%s %s" % (pre, node.label, node.study_node_counts), file=text_file)

        #with open("manual_review/tree_term_counts.txt", "a") as text_file:
            #print(RenderTree(tree_root), file=text_file)


        #labels (pathological findings) associated to differential diagnoses
        #load differential diagnosis subtree
        #for each diagnosis collect all other pathological findings in all_info_study_labels
        if tree_root.label == "differential diagnosis":
            for n in tree_root.descendants:
                n.ordered_near_labels = pd.Series([l for sublist in row_labels[row_labels['label_list'] >= {n.label}]['label_list'] for l in sublist ]).value_counts()

            #with open("manual_review/tree_term_counts.txt", "a") as text_file:
                #print(RenderTree(tree_root), file=text_file)
    return
Exemple #17
0
 def read(self) -> Entry:
     content = None
     if os.path.isfile(self._filepath):
         fp = open(Path(self._filepath))
         d_imp = DictImporter(nodecls=Entry)
         importer = JsonImporter(dictimporter=d_imp)
         content = importer.import_(fp.read())
         fp.close()
     return content
Exemple #18
0
    def from_file(cls, filename):
        """
        Load parameter space as a ternary tree from pickle file.
        """
        # load dict from pickle
        if not filename.endswith(PKL_EXT):
            filename += PKL_EXT
        with open(filename, "rb") as f:
            loaded_dict = pickle.load(f)

        def _sanitize_dict(raw_dict, keys_to_delete):
            """
            Remove keys from dict - possibly nested.
            """
            sanit_dict = {}
            for key, value in raw_dict.items():
                if key not in keys_to_delete:
                    if isinstance(value, (list, tuple)):
                        sanit_dict[key] = [
                            _sanitize_dict(list_val, keys_to_delete)
                            if isinstance(list_val, dict)
                            else list_val
                            for list_val in value
                        ]
                    elif isinstance(value, dict):
                        sanit_dict[key] = _sanitize_dict(value, keys_to_delete)
                    else:
                        sanit_dict[key] = value
            return sanit_dict

        # sanitise dict for correct init
        keys_to_delete = set(loaded_dict.keys()) - set(cls.INIT_ATTRS)
        sanitised_dict = _sanitize_dict(loaded_dict, keys_to_delete)
        # import as `LeafNode` class
        importer = DictImporter(nodecls=LeafNode)
        root_leaf_node = importer.import_(sanitised_dict)
        # force `ParameterSpace` class which extends `LeafNode` with some
        # useful methods
        root_leaf_node.__class__ = ParameterSpace

        return root_leaf_node
def load_from_file(path):
    path = osp.expanduser(path)
    if osp.exists(osp.dirname(path)):
        dict_imp = DictImporter(nodecls=DPNode)
        imp = JsonImporter(dictimporter=dict_imp,
                           object_hook=tools.object_hook)
        with open(path, "r") as f:
            res = imp.read(f)
        return RemoteTree(res)
    else:
        print("Error saving to disk. Dir {} not existing.".format(
            osp.dirname(path)))
Exemple #20
0
    def generate_json(self):
        nested_dict = self.build()
        importer = DictImporter()
        tree = importer.import_(nested_dict)

        hr_entries = []
        for node in LevelOrderIter(tree):
            item = {
                'PreferredFirstName':
                getattr(node, 'PreferredFirstName'),
                'Preferred_Name_-_Last_Name':
                getattr(node, 'Preferred_Name_-_Last_Name'),
                'businessTitle':
                getattr(node, 'businessTitle'),
                'EmployeeID':
                getattr(node, 'EmployeeID'),
                'PrimaryWorkEmail':
                getattr(node, 'PrimaryWorkEmail'),
                'IsManager':
                len(node.children) > 0,
            }

            if node.parent:
                manager_first_name = getattr(node.parent, 'PreferredFirstName')
                manager_last_name = getattr(node.parent,
                                            'Preferred_Name_-_Last_Name')
                manager = {
                    'WorkersManager':
                    '{} {}'.format(manager_first_name, manager_last_name),
                    'WorkersManagersEmployeeID':
                    getattr(node.parent, 'EmployeeID')
                }
                item.update(manager)

            hr_entries.append(item)

        hr_data = {'Report_Entry': hr_entries}

        return json.dumps(hr_data)
Exemple #21
0
def vis_trees(trees: List[Dict[Text, Any]], word_info=True):
    from anytree.importer import DictImporter
    from anytree import RenderTree
    importer = DictImporter()
    for index, data in enumerate(trees):
        word = data['word']
        if word_info:
            pprint(word)
        tree_root = importer.import_(data['tree'])
        tree = RenderTree(tree_root)
        tc.emp(
            'green',
            f"Display #{index} sememe tree: {word['en_word']}|{word['ch_word']}.{word['No']}"
        )
        for pre, fill, node in tree:
            if node.role and node.role != 'None':
                cl = 'magenta'
                role = node.role
            else:
                cl = 'yellow'
                role = '✔'
            tc.emp(cl, "%s%s: %s" % (pre, role, node.name))
Exemple #22
0
def analyze_paths(df: pd.DataFrame) -> Tuple[Node, int]:
    use_prepruning = st.checkbox("Use Pre-Pruning?")
    tree, max_count = build_page_hierarchy(
        df, aggregation_nodes if use_prepruning else None)
    root = DictImporter().import_(tree)

    # if st.checkbox("Show pagetree in ASCII?", value=False):
    #     st.text(RenderTree(root, style=ContRoundStyle()))
    # if st.checkbox("Show pagetree as graph?", value=True):
    min_counts = st.slider("Minimum number of counts:",
                           value=2,
                           min_value=0,
                           max_value=50)
    root = prune_tree(root, min_counts)

    return root, max_count
def get_all_terms():
    labels = {}
    stream = open("trees_code.txt", "r")
    docs = yaml.load_all(stream, Loader=yaml.FullLoader)
    for doc in docs:
        tree_root = DictImporter().import_(doc)
        labels[tree_root.label] = ''
        for pre, _, node in RenderTree(tree_root):
            CUI = ''
            try:
                CUI = node.concept
                m = re.search('\((\w+)\)', CUI)
                if m:
                    CUI = m.group(0).strip('(').strip(')')
            except:
                pass
            labels[node.label] = CUI
    return labels
Exemple #24
0
def get_all_terms():
    labels = {}
    path = root + '/Rx-thorax-automatic-captioning/' + filetree
    stream = open(path, "r")
    docs = yaml.load_all(stream, Loader=yaml.FullLoader)
    for doc in docs:
        tree_root = DictImporter().import_(doc)
        labels[tree_root.label] = ''
        for pre, _, node in RenderTree(tree_root):
            CUI = ''
            try:
                CUI = node.concept
                m = re.search('\((\w+)\)', CUI)
                if m:
                    CUI = m.group(0).strip('(').strip(')')
            except:
                pass
            labels[node.label] = CUI
    return labels