Exemple #1
0
def load(events, metadata=None):
    # find winning bids for each closed auction
    return (events
            # find winning bids
            | beam.Filter(nexmark_query_util.auction_or_bid)
            | winning_bids.WinningBids()
            # (auction_bids -> (aution.seller, bid)
            | beam.Map(lambda auc_bid: (auc_bid.auction.seller, auc_bid.bid))
            # calculate and output mean as data arrives
            | beam.WindowInto(
                window.GlobalWindows(),
                trigger=trigger.Repeatedly(trigger.AfterCount(1)),
                accumulation_mode=trigger.AccumulationMode.ACCUMULATING,
                allowed_lateness=0)
            | beam.CombinePerKey(MovingMeanSellingPriceFn(10))
            | beam.Map(lambda t: {
                ResultNames.SELLER: t[0],
                ResultNames.PRICE: t[1]
            }))
Exemple #2
0
def load(events, metadata=None):
    # find winning bids for each closed auction
    all_winning_bids = (events
                        | beam.Filter(nexmark_query_util.auction_or_bid)
                        | winning_bids.WinningBids())
    return (
        all_winning_bids
        # key winning bids by auction category
        |
        beam.Map(lambda auc_bid: (auc_bid.auction.category, auc_bid.bid.price))
        # re-window for sliding average
        | beam.WindowInto(
            window.SlidingWindows(metadata.get('window_size_sec'),
                                  metadata.get('window_period_sec')))
        # average for each category
        | beam.CombinePerKey(beam.combiners.MeanCombineFn())
        # TODO(leiyiz): fanout with sliding window produces duplicated results,
        #   uncomment after it is fixed [BEAM-10617]
        # .with_hot_key_fanout(metadata.get('fanout'))
        # produce output
        | beam.ParDo(ProjectToCategoryPriceFn()))
Exemple #3
0
def load(events, metadata=None):
    return (events
            | beam.Filter(nexmark_query_util.auction_or_bid)
            | winning_bids.WinningBids())