Exemple #1
0
assert EN.vocab.stoi[Constants.EOS_WORD] == Constants.EOS
assert EN.vocab.stoi[Constants.PAD_WORD] == Constants.PAD
assert EN.vocab.stoi[Constants.UNK_WORD] == Constants.UNK

# ---------- init model ----------

try:
    G = load_model(opt.load_G_from)
except AttributeError:
    hidden_size = 512
    bidirectional = True
    encoder = EncoderRNN(len(EN.vocab), opt.max_len, hidden_size,
                         input_dropout_p=0, dropout_p=0, n_layers=1,
                         bidirectional=bidirectional, variable_lengths=True, rnn_cell='gru')
    decoder = DecoderRNN(len(EN.vocab), opt.max_len, hidden_size * 2 if bidirectional else 1, n_layers=1,
                         dropout_p=0.2, use_attention=True, bidirectional=bidirectional, rnn_cell='gru',
                         eos_id=Constants.EOS, sos_id=Constants.BOS)
    G = Seq2seq(encoder, decoder)
    for param in G.parameters():
        param.data.uniform_(-0.08, 0.08)

try:
    D = load_model(opt.load_D_from)
except AttributeError:
    D = BinaryClassifierCNN(len(EN.vocab),
                            embed_dim=opt.embed_dim,
                            num_kernel=opt.num_kernel,
                            kernel_sizes=opt.kernel_sizes,
                            dropout_p=opt.dropout_p)

# optim_G = ScheduledOptim(optim.Adam(
Exemple #2
0
def main():
    parser = argparse.ArgumentParser()
    opt = options.train_options(parser)
    opt = parser.parse_args()

    opt.cuda = torch.cuda.is_available()
    opt.device = None if opt.cuda else -1

    # 快速變更設定
    opt.exp_dir = './experiment/transformer-reinforce/use_billion'
    opt.load_vocab_from = './experiment/transformer/lang8-cor2err/vocab.pt'
    opt.build_vocab_from = './data/billion/billion.30m.model.vocab'

    opt.load_D_from = opt.exp_dir
    # opt.load_D_from = None

    # dataset params
    opt.max_len = 20

    # G params
    # opt.load_G_a_from = './experiment/transformer/lang8-err2cor/'
    # opt.load_G_b_from = './experiment/transformer/lang8-cor2err/'
    opt.d_word_vec = 300
    opt.d_model = 300
    opt.d_inner_hid = 600
    opt.n_head = 6
    opt.n_layers = 3
    opt.embs_share_weight = False
    opt.beam_size = 1
    opt.max_token_seq_len = opt.max_len + 2  # 包含<BOS>, <EOS>
    opt.n_warmup_steps = 4000

    # D params
    opt.embed_dim = opt.d_model
    opt.num_kernel = 100
    opt.kernel_sizes = [3, 4, 5, 6, 7]
    opt.dropout_p = 0.25

    # train params
    opt.batch_size = 1
    opt.n_epoch = 10

    if not os.path.exists(opt.exp_dir):
        os.makedirs(opt.exp_dir)
    logging.basicConfig(filename=opt.exp_dir + '/.log',
                        format=LOG_FORMAT,
                        level=logging.DEBUG)
    logging.getLogger().addHandler(logging.StreamHandler())

    logging.info('Use CUDA? ' + str(opt.cuda))
    logging.info(opt)

    # ---------- prepare dataset ----------

    def len_filter(example):
        return len(example.src) <= opt.max_len and len(
            example.tgt) <= opt.max_len

    EN = SentencePieceField(init_token=Constants.BOS_WORD,
                            eos_token=Constants.EOS_WORD,
                            batch_first=True,
                            include_lengths=True)

    train = datasets.TranslationDataset(path='./data/dualgan/train',
                                        exts=('.billion.sp', '.use.sp'),
                                        fields=[('src', EN), ('tgt', EN)],
                                        filter_pred=len_filter)
    val = datasets.TranslationDataset(path='./data/dualgan/val',
                                      exts=('.billion.sp', '.use.sp'),
                                      fields=[('src', EN), ('tgt', EN)],
                                      filter_pred=len_filter)
    train_lang8, val_lang8 = Lang8.splits(exts=('.err.sp', '.cor.sp'),
                                          fields=[('src', EN), ('tgt', EN)],
                                          train='test',
                                          validation='test',
                                          test=None,
                                          filter_pred=len_filter)

    # 讀取 vocabulary(確保一致)
    try:
        logging.info('Load voab from %s' % opt.load_vocab_from)
        EN.load_vocab(opt.load_vocab_from)
    except FileNotFoundError:
        EN.build_vocab_from(opt.build_vocab_from)
        EN.save_vocab(opt.load_vocab_from)

    logging.info('Vocab len: %d' % len(EN.vocab))

    # 檢查Constants是否有誤
    assert EN.vocab.stoi[Constants.BOS_WORD] == Constants.BOS
    assert EN.vocab.stoi[Constants.EOS_WORD] == Constants.EOS
    assert EN.vocab.stoi[Constants.PAD_WORD] == Constants.PAD
    assert EN.vocab.stoi[Constants.UNK_WORD] == Constants.UNK

    # ---------- init model ----------

    # G = build_G(opt, EN, EN)
    hidden_size = 512
    bidirectional = True
    encoder = EncoderRNN(len(EN.vocab),
                         opt.max_len,
                         hidden_size,
                         n_layers=1,
                         bidirectional=bidirectional)
    decoder = DecoderRNN(len(EN.vocab),
                         opt.max_len,
                         hidden_size * 2 if bidirectional else 1,
                         n_layers=1,
                         dropout_p=0.2,
                         use_attention=True,
                         bidirectional=bidirectional,
                         eos_id=Constants.EOS,
                         sos_id=Constants.BOS)
    G = Seq2seq(encoder, decoder)
    for param in G.parameters():
        param.data.uniform_(-0.08, 0.08)

    # optim_G = ScheduledOptim(optim.Adam(
    #     G.get_trainable_parameters(),
    #     betas=(0.9, 0.98), eps=1e-09),
    #     opt.d_model, opt.n_warmup_steps)
    optim_G = optim.Adam(G.parameters(), lr=1e-4, betas=(0.9, 0.98), eps=1e-09)
    loss_G = NLLLoss(size_average=False)
    if torch.cuda.is_available():
        loss_G.cuda()

    # # 預先訓練D
    if opt.load_D_from:
        D = load_model(opt.load_D_from)
    else:
        D = build_D(opt, EN)
    optim_D = torch.optim.Adam(D.parameters(), lr=1e-4)

    def get_criterion(vocab_size):
        ''' With PAD token zero weight '''
        weight = torch.ones(vocab_size)
        weight[Constants.PAD] = 0
        return nn.CrossEntropyLoss(weight, size_average=False)

    crit_G = get_criterion(len(EN.vocab))
    crit_D = nn.BCELoss()

    if opt.cuda:
        G.cuda()
        D.cuda()
        crit_G.cuda()
        crit_D.cuda()

    # ---------- train ----------

    trainer_D = trainers.DiscriminatorTrainer()

    if not opt.load_D_from:
        for epoch in range(1):
            logging.info('[Pretrain D Epoch %d]' % epoch)

            pool = helper.DiscriminatorDataPool(opt.max_len, D.min_len,
                                                Constants.PAD)

            # 將資料塞進pool中
            train_iter = data.BucketIterator(dataset=train,
                                             batch_size=opt.batch_size,
                                             device=opt.device,
                                             sort_key=lambda x: len(x.src),
                                             repeat=False)
            pool.fill(train_iter)

            # train D
            trainer_D.train(D,
                            train_iter=pool.batch_gen(),
                            crit=crit_D,
                            optimizer=optim_D)
            pool.reset()

        Checkpoint(model=D,
                   optimizer=optim_D,
                   epoch=0,
                   step=0,
                   input_vocab=EN.vocab,
                   output_vocab=EN.vocab).save(opt.exp_dir)

    def eval_D():
        pool = helper.DiscriminatorDataPool(opt.max_len, D.min_len,
                                            Constants.PAD)
        val_iter = data.BucketIterator(dataset=val,
                                       batch_size=opt.batch_size,
                                       device=opt.device,
                                       sort_key=lambda x: len(x.src),
                                       repeat=False)
        pool.fill(val_iter)
        trainer_D.evaluate(D, val_iter=pool.batch_gen(), crit=crit_D)

        # eval_D()

    # Train G
    ALPHA = 0
    for epoch in range(100):
        logging.info('[Epoch %d]' % epoch)
        train_iter = data.BucketIterator(dataset=train,
                                         batch_size=1,
                                         device=opt.device,
                                         sort_within_batch=True,
                                         sort_key=lambda x: len(x.src),
                                         repeat=False)

        for step, batch in enumerate(train_iter):
            src_seq = batch.src[0]
            src_length = batch.src[1]
            tgt_seq = src_seq[0].clone()
            # gold = tgt_seq[:, 1:]

            optim_G.zero_grad()
            loss_G.reset()

            decoder_outputs, decoder_hidden, other = G.rollout(src_seq,
                                                               None,
                                                               None,
                                                               n_rollout=1)
            for i, step_output in enumerate(decoder_outputs):
                batch_size = tgt_seq.size(0)
                # print(step_output)

                # loss_G.eval_batch(step_output.contiguous().view(batch_size, -1), tgt_seq[:, i + 1])

            softmax_output = torch.exp(
                torch.cat([x for x in decoder_outputs], dim=0)).unsqueeze(0)
            softmax_output = helper.stack(softmax_output, 8)

            print(softmax_output)
            rollout = softmax_output.multinomial(1)
            print(rollout)

            tgt_seq = helper.pad_seq(tgt_seq.data,
                                     max_len=len(decoder_outputs) + 1,
                                     pad_value=Constants.PAD)
            tgt_seq = autograd.Variable(tgt_seq)
            for i, step_output in enumerate(decoder_outputs):
                batch_size = tgt_seq.size(0)
                loss_G.eval_batch(
                    step_output.contiguous().view(batch_size, -1),
                    tgt_seq[:, i + 1])
            G.zero_grad()
            loss_G.backward()
            optim_G.step()

            if step % 100 == 0:
                pred = torch.cat([x for x in other['sequence']], dim=1)
                print('[step %d] loss_rest %.4f' %
                      (epoch * len(train_iter) + step, loss_G.get_loss()))
                print('%s -> %s' %
                      (EN.reverse(tgt_seq.data)[0], EN.reverse(pred.data)[0]))

    # Reinforce Train G
    for p in D.parameters():
        p.requires_grad = False