Exemple #1
0
 def initialize_distributed_model(self):
     if self.local_rank != -1:
         if not self.fp16:
             self.model = DDP(self.model)
         else:
             flat_dist_call([param.data for param in self.model.parameters()],
                            torch.distributed.broadcast, (0,))
     elif self.n_gpu > 1:
         self.model = nn.DataParallel(self.model)
Exemple #2
0
 def comm_model(self):
     for i in range(2):
         if self.rank == self.team_ranks[i][0]:
             flat_dist_call([param.data for param in self.model.parameters()],
                            torch.distributed.broadcast, (i * self.team_size, self.model_comm_groups[i]))
         elif self.rank in self.team_ranks[i]:
             flat_dist_call([param.data for param in self.another_model.parameters()],
                            torch.distributed.broadcast, (i * self.team_size, self.model_comm_groups[i]))
     self.another_model_updated = True
Exemple #3
0
    def allreduce(self):
        def dummy_all_reduce(*args, **kwargs):
            return dist.all_reduce(*args, **kwargs)

        params = [param.grad.data for param in self.model.parameters()]
        flat_dist_call(params,
                       dummy_all_reduce, (torch.distributed.ReduceOp.SUM, self.team_group))
        for param in params:
            param /= self.team_size
Exemple #4
0
    def allreduce_persistent(self):
        def dummy_all_reduce(*args, **kwargs):
            return dist.all_reduce(*args, **kwargs)

        all_params = list(map(lambda x: x[1], sorted(self.model.state_dict().items())))
        flat_dist_call(all_params,
                       dummy_all_reduce, (torch.distributed.ReduceOp.SUM, self.team_group))
        for param in all_params:
            param /= self.team_size
Exemple #5
0
 def comm_model(self):
     for i in range(2):
         root = self.comm_model_group_ranks[i][0]
         teams = set(range(root, root + self.team_size))
         if self.rank in teams:
             flat_dist_call(
                 [param.data for param in self.model.parameters()],
                 torch.distributed.broadcast, (i * self.team_size, ))
         else:
             flat_dist_call(
                 [param.data for param in self.another_model.parameters()],
                 torch.distributed.broadcast, (i * self.team_size, ))
    def train(self):
        model = self.model
        self.time_start = time.time()
        self.criterion = torch.nn.CrossEntropyLoss().cuda()
        self.loss_stats = util.Stats()
        self.acc_stats = util.Stats()
        self.dloss_stats = util.Stats()

        self.it = 0

        flat_dist_call([param.data for param in model.parameters()],
                       dist.broadcast, (self.team_leader, self.team_group))
        self.optimizer.zero_grad()

        if self.options.distillation_overlap:
            assert self.options.distillation
            self.train_loop_distillation_overlap()
        else:
            for epoch in range(self.options.epoch):
                self.epoch = epoch

                if not self.options.distillation:
                    self.train_loop_plain()
                else:
                    if self.options.equalize_data:
                        self.train_loop_distillation_equalized()
                    else:
                        self.train_loop_distillation_original()

                self.allreduce_persistent()
                val_acc = self.evaluate()
                if self.team_rank == 0:
                    print('accuracy epoch #{}: {}'.format(epoch, val_acc))

        if self.team_rank == 0:
            elapsed = time.time() - self.time_start
            print('cost: {:.3f}'.format(elapsed))
        if self.team_rank == 0 and not self.options.no_output_model:
            if self.options.distillation:
                torch.save(
                    model.state_dict(),
                    os.path.join(self.options.out,
                                 'weight.{}.pth'.format(self.team)))
            else:
                torch.save(model.state_dict(),
                           os.path.join(self.options.out, 'weight.pth'))
Exemple #7
0
def prepare_model_and_optimizer(args, device):

    # Prepare model
    config = modeling.BertConfig.from_json_file(args.config_file)

    # Padding for divisibility by 8
    if config.vocab_size % 8 != 0:
        config.vocab_size += 8 - (config.vocab_size % 8)

    modeling.ACT2FN["bias_gelu"] = modeling.bias_gelu_training
    model = modeling.BertForPreTraining(config)

    if args.disable_weight_tying:
        import torch.nn as nn
        print ("WARNING!!!!!!! Disabling weight tying for this run")
        print ("BEFORE ", model.cls.predictions.decoder.weight is model.bert.embeddings.word_embeddings.weight)
        model.cls.predictions.decoder.weight = torch.nn.Parameter(model.cls.predictions.decoder.weight.clone().detach())
        print ("AFTER ", model.cls.predictions.decoder.weight is model.bert.embeddings.word_embeddings.weight)
        assert (model.cls.predictions.decoder.weight is model.bert.embeddings.word_embeddings.weight) == False

    checkpoint = None
    if not args.resume_from_checkpoint:
        global_step = 0
    else:
        if args.resume_step == -1 and not args.init_checkpoint:
            model_names = [f for f in os.listdir(args.output_dir) if f.endswith(".pt")]
            args.resume_step = max([int(x.split('.pt')[0].split('_')[1].strip()) for x in model_names])

        global_step = args.resume_step if not args.init_checkpoint else 0

        if not args.init_checkpoint:
            checkpoint = torch.load(os.path.join(args.output_dir, "ckpt_{}.pt".format(global_step)), map_location="cpu")
        else:
            checkpoint = torch.load(args.init_checkpoint, map_location="cpu")

        model.load_state_dict(checkpoint['model'], strict=False)
        
        if args.phase2 and not args.init_checkpoint:
            global_step -= args.phase1_end_step
        if is_main_process():
            print("resume step from ", args.resume_step)

    model.to(device)
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'gamma', 'beta', 'LayerNorm']
    
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}]

    optimizer = FusedAdam(optimizer_grouped_parameters,
                          lr=args.learning_rate)
    lr_scheduler = PolyWarmUpScheduler(optimizer, 
                                       warmup=args.warmup_proportion, 
                                       total_steps=args.max_steps,
                                       degree=1)
    if args.fp16:

        if args.loss_scale == 0:
            model, optimizer = amp.initialize(model, optimizer, opt_level="O2", loss_scale="dynamic", cast_model_outputs=torch.float16)
        else:
            model, optimizer = amp.initialize(model, optimizer, opt_level="O2", loss_scale=args.loss_scale, cast_model_outputs=torch.float16)
        amp._amp_state.loss_scalers[0]._loss_scale = args.init_loss_scale

    model.checkpoint_activations(args.checkpoint_activations)

    if args.resume_from_checkpoint:
        if args.phase2 or args.init_checkpoint:
            keys = list(checkpoint['optimizer']['state'].keys())
            #Override hyperparameters from previous checkpoint
            for key in keys:
                checkpoint['optimizer']['state'][key]['step'] = global_step
            for iter, item in enumerate(checkpoint['optimizer']['param_groups']):
                checkpoint['optimizer']['param_groups'][iter]['step'] = global_step
                checkpoint['optimizer']['param_groups'][iter]['t_total'] = args.max_steps
                checkpoint['optimizer']['param_groups'][iter]['warmup'] = args.warmup_proportion
                checkpoint['optimizer']['param_groups'][iter]['lr'] = args.learning_rate
        optimizer.load_state_dict(checkpoint['optimizer'])  # , strict=False)

        # Restore AMP master parameters          
        if args.fp16:
            optimizer._lazy_init_maybe_master_weights()
            optimizer._amp_stash.lazy_init_called = True
            optimizer.load_state_dict(checkpoint['optimizer'])
            for param, saved_param in zip(amp.master_params(optimizer), checkpoint['master params']):
                param.data.copy_(saved_param.data)

    if args.local_rank != -1:
        if not args.allreduce_post_accumulation:
            model = DDP(model, message_size=250000000, gradient_predivide_factor=get_world_size())
        else:
            flat_dist_call([param.data for param in model.parameters()], torch.distributed.broadcast, (0,) )
    elif args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    criterion = BertPretrainingCriterion(config.vocab_size)


    if args.disable_weight_tying:
       # Sanity Check that new param is in optimizer
       print ("SANITY CHECK OPTIMIZER: ", id(model.module.cls.predictions.decoder.weight) in [id(g) for g in optimizer.param_groups[0]['params']])
       assert id(model.module.cls.predictions.decoder.weight) in [id(g) for g in optimizer.param_groups[0]['params']]

    return model, optimizer, lr_scheduler, checkpoint, global_step, criterion
Exemple #8
0
 def sync_params(self):
     assert self.distribured_enabled
     core = self._get_core()
     flat_dist_call([param.data for param in core.parameters()], dist.all_reduce)
     self.core.needs_refresh = True
def prepare_model_and_optimizer(args, device):

    # Prepare model
    config = BertConfig.from_json_file(args.config_file)

    # Padding for divisibility by 8
    if config.vocab_size % 8 != 0:
        config.vocab_size += 8 - (config.vocab_size % 8)
    model = BertForPreTraining(config)

    checkpoint = None
    if not args.resume_from_checkpoint:
        global_step = 0
    else:
        if args.resume_step == -1 and not args.init_checkpoint:
            model_names = [
                f for f in os.listdir(args.output_dir) if f.endswith(".pt")
            ]
            args.resume_step = max([
                int(x.split('.pt')[0].split('_')[1].strip())
                for x in model_names
            ])

        global_step = args.resume_step if not args.init_checkpoint else 0

        if not args.init_checkpoint:
            checkpoint = torch.load(os.path.join(
                args.output_dir, "ckpt_{}.pt".format(global_step)),
                                    map_location="cpu")
        else:
            checkpoint = torch.load(args.init_checkpoint, map_location="cpu")

        model.load_state_dict(checkpoint['model'], strict=False)
        if args.phase2:
            global_step -= args.phase1_end_step
        if is_main_process():
            print("resume step from ", args.resume_step)

    model.to(device)
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'gamma', 'beta', 'LayerNorm']

    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    optimizer = FusedLAMB(optimizer_grouped_parameters, lr=args.learning_rate)
    lr_scheduler = PolyWarmUpScheduler(optimizer,
                                       warmup=args.warmup_proportion,
                                       total_steps=args.max_steps)
    if args.fp16:

        if args.loss_scale == 0:
            model, optimizer = amp.initialize(model,
                                              optimizer,
                                              opt_level="O2",
                                              loss_scale="dynamic")
        else:
            model, optimizer = amp.initialize(model,
                                              optimizer,
                                              opt_level="O2",
                                              loss_scale=args.loss_scale)
        amp._amp_state.loss_scalers[0]._loss_scale = 2**20

    if args.resume_from_checkpoint:
        if args.phase2 or args.init_checkpoint:
            keys = list(checkpoint['optimizer']['state'].keys())
            #Override hyperparameters from previous checkpoint
            for key in keys:
                checkpoint['optimizer']['state'][key]['step'] = global_step
            for iter, item in enumerate(
                    checkpoint['optimizer']['param_groups']):
                checkpoint['optimizer']['param_groups'][iter][
                    'step'] = global_step
                checkpoint['optimizer']['param_groups'][iter][
                    't_total'] = args.max_steps
                checkpoint['optimizer']['param_groups'][iter][
                    'warmup'] = args.warmup_proportion
                checkpoint['optimizer']['param_groups'][iter][
                    'lr'] = args.learning_rate
        optimizer.load_state_dict(checkpoint['optimizer'])  # , strict=False)

        # Restore AMP master parameters
        if args.fp16:
            optimizer._lazy_init_maybe_master_weights()
            optimizer._amp_stash.lazy_init_called = True
            optimizer.load_state_dict(checkpoint['optimizer'])
            for param, saved_param in zip(amp.master_params(optimizer),
                                          checkpoint['master params']):
                param.data.copy_(saved_param.data)

    if args.local_rank != -1:
        if not args.allreduce_post_accumulation:
            model = DDP(
                model,
                message_size=250000000,
                gradient_predivide_factor=torch.distributed.get_world_size())
        else:
            flat_dist_call([param.data for param in model.parameters()],
                           torch.distributed.broadcast, (0, ))
    elif args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    return model, optimizer, lr_scheduler, checkpoint, global_step
Exemple #10
0
def prepare_model_and_optimizer(args, device):

    # Prepare model
    config = modeling.BertConfig.from_json_file(args.config_file)

    # Padding for divisibility by 8
    if config.vocab_size % 8 != 0:
        config.vocab_size += 8 - (config.vocab_size % 8)

    modeling.ACT2FN["bias_gelu"] = modeling.bias_gelu_training
    model = modeling.BertForPreTraining(config)

    checkpoint = None
    if not args.resume_from_checkpoint:
        global_step = 0
    else:
        if args.resume_step == -1 and not args.init_checkpoint:
            model_names = [
                f for f in os.listdir(args.output_dir) if f.endswith(".pt")
            ]
            args.resume_step = max([
                int(x.split('.pt')[0].split('_')[1].strip())
                for x in model_names
            ])

        global_step = args.resume_step if not args.init_checkpoint else 0

        if not args.init_checkpoint:
            checkpoint = torch.load(os.path.join(
                args.output_dir, "ckpt_{}.pt".format(global_step)),
                                    map_location="cpu")
        else:
            checkpoint = torch.load(args.init_checkpoint, map_location="cpu")

        model.load_state_dict(checkpoint['model'], strict=False)

        if args.phase2 and not args.init_checkpoint:
            global_step -= args.phase1_end_step
        if is_main_process():
            print("resume step from ", args.resume_step)

    model.to(device)
    # BERT modeling  uses weight sharing between word embedding and prediction decoder.
    # So make sure the storage is pointing properly even after model is moved to device.
    if args.use_habana:
        model.cls.predictions.decoder.weight = model.bert.embeddings.word_embeddings.weight

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'gamma', 'beta', 'LayerNorm']

    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    if args.use_habana:
        if args.use_fused_lamb:
            try:
                from hb_custom import FusedLamb
            except ImportError:
                raise ImportError("Please install hbopt.")
            optimizer = FusedLamb(optimizer_grouped_parameters,
                                  lr=args.learning_rate)
        else:
            optimizer = NVLAMB(optimizer_grouped_parameters,
                               lr=args.learning_rate)
    else:
        if torch.cuda.is_available():
            optimizer = FusedLAMB(optimizer_grouped_parameters,
                                  lr=args.learning_rate)
        else:
            optimizer = NVLAMB(optimizer_grouped_parameters,
                               lr=args.learning_rate)

    lr_scheduler = PolyWarmUpScheduler(optimizer,
                                       warmup=args.warmup_proportion,
                                       total_steps=args.max_steps)
    if args.fp16:

        if args.loss_scale == 0:
            model, optimizer = amp.initialize(model,
                                              optimizer,
                                              opt_level="O2",
                                              loss_scale="dynamic",
                                              cast_model_outputs=torch.float16)
        else:
            model, optimizer = amp.initialize(model,
                                              optimizer,
                                              opt_level="O2",
                                              loss_scale=args.loss_scale,
                                              cast_model_outputs=torch.float16)
        amp._amp_state.loss_scalers[0]._loss_scale = args.init_loss_scale

    model.checkpoint_activations(args.checkpoint_activations)

    if args.resume_from_checkpoint:
        if args.phase2 or args.init_checkpoint:
            keys = list(checkpoint['optimizer']['state'].keys())
            #Override hyperparameters from previous checkpoint
            for key in keys:
                checkpoint['optimizer']['state'][key]['step'] = global_step
            for iter, item in enumerate(
                    checkpoint['optimizer']['param_groups']):
                checkpoint['optimizer']['param_groups'][iter][
                    'step'] = global_step
                checkpoint['optimizer']['param_groups'][iter][
                    't_total'] = args.max_steps
                checkpoint['optimizer']['param_groups'][iter][
                    'warmup'] = args.warmup_proportion
                checkpoint['optimizer']['param_groups'][iter][
                    'lr'] = args.learning_rate
        optimizer.load_state_dict(checkpoint['optimizer'])  # , strict=False)

        # Restore AMP master parameters
        if args.fp16:
            optimizer._lazy_init_maybe_master_weights()
            optimizer._amp_stash.lazy_init_called = True
            optimizer.load_state_dict(checkpoint['optimizer'])
            for param, saved_param in zip(amp.master_params(optimizer),
                                          checkpoint['master params']):
                param.data.copy_(saved_param.data)

    if args.local_rank != -1:
        if not args.allreduce_post_accumulation:
            if not args.use_jit_trace:
                if args.use_habana:
                    model = DDP(model)
                else:
                    model = DDP(model,
                                message_size=250000000,
                                gradient_predivide_factor=get_world_size())
        else:
            flat_dist_call([param.data for param in model.parameters()],
                           torch.distributed.broadcast, (0, ))
    elif args.n_pu > 1:
        model = torch.nn.DataParallel(model)

    criterion = BertPretrainingCriterion(config.vocab_size)

    return model, optimizer, lr_scheduler, checkpoint, global_step, criterion
def prepare_model_and_optimizer(args, device):

    # Prepare model
    config = BertConfig.from_json_file(args.config_file)

    # Padding for divisibility by 8
    if config.vocab_size % 8 != 0:
        config.vocab_size += 8 - (config.vocab_size % 8)
    model = BertForPreTraining(config)

    checkpoint = None
    if not args.resume_from_checkpoint:
        global_step = 0
    else:
        if args.resume_step == -1:
            model_names = [
                f for f in os.listdir(args.output_dir) if f.endswith(".pt")
            ]
            args.resume_step = max([
                int(x.split(".pt")[0].split("_")[1].strip())
                for x in model_names
            ])
        global_step = args.resume_step

        checkpoint = torch.load(os.path.join(args.output_dir,
                                             "ckpt_{}.pt".format(global_step)),
                                map_location="cpu")
        model.load_state_dict(checkpoint["model"], strict=False)
        if args.phase2:
            global_step -= args.phase1_end_step
        if is_main_process():
            print("resume step from ", args.resume_step)

    model.to(device)
    param_optimizer = list(model.named_parameters())
    no_decay = ["bias", "gamma", "beta", "LayerNorm"]

    optimizer_grouped_parameters = []
    names = []

    count = 1
    for n, p in param_optimizer:
        count += 1
        if not any(nd in n for nd in no_decay):
            optimizer_grouped_parameters.append({
                "params": [p],
                "weight_decay": 0.01,
                "name": n
            })
            names.append({"params": [n], "weight_decay": 0.01})
        if any(nd in n for nd in no_decay):
            optimizer_grouped_parameters.append({
                "params": [p],
                "weight_decay": 0.00,
                "name": n
            })
            names.append({"params": [n], "weight_decay": 0.00})

    optimizer = BertLAMB(optimizer_grouped_parameters,
                         lr=args.learning_rate,
                         warmup=args.warmup_proportion,
                         t_total=args.max_steps)
    if args.fp16:

        if args.loss_scale == 0:
            # optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            model, optimizer = amp.initialize(
                model,
                optimizer,
                opt_level="O2",
                loss_scale="dynamic",
                master_weights=False if args.accumulate_into_fp16 else True,
            )
        else:
            # optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
            model, optimizer = amp.initialize(
                model,
                optimizer,
                opt_level="O2",
                loss_scale=args.loss_scale,
                master_weights=False if args.accumulate_into_fp16 else True,
            )
        amp._amp_state.loss_scalers[0]._loss_scale = 2**20

    if args.resume_from_checkpoint:
        if args.phase2:
            keys = list(checkpoint["optimizer"]["state"].keys())
            # Override hyperparameters from Phase 1
            for key in keys:
                checkpoint["optimizer"]["state"][key]["step"] = global_step
            for iter, item in enumerate(
                    checkpoint["optimizer"]["param_groups"]):
                checkpoint["optimizer"]["param_groups"][iter][
                    "t_total"] = args.max_steps
                checkpoint["optimizer"]["param_groups"][iter][
                    "warmup"] = args.warmup_proportion
                checkpoint["optimizer"]["param_groups"][iter][
                    "lr"] = args.learning_rate
        optimizer.load_state_dict(checkpoint["optimizer"])  # , strict=False)

        # Restore AMP master parameters
        if args.fp16:
            optimizer._lazy_init_maybe_master_weights()
            optimizer._amp_stash.lazy_init_called = True
            optimizer.load_state_dict(checkpoint["optimizer"])
            for param, saved_param in zip(amp.master_params(optimizer),
                                          checkpoint["master params"]):
                param.data.copy_(saved_param.data)

    if args.local_rank != -1:
        if not args.allreduce_post_accumulation:
            model = DDP(
                model,
                message_size=250000000,
                gradient_predivide_factor=torch.distributed.get_world_size())
        else:
            flat_dist_call([param.data for param in model.parameters()],
                           torch.distributed.broadcast, (0, ))
    elif args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    return model, optimizer, checkpoint, global_step
def prepare_model_and_optimizer(args, device):
    global_step = 0
    args.resume_step = 0
    checkpoint = None

    config = BertConfig.from_json_file(args.bert_config_path)
    config.fused_mha = args.fused_mha
    config.fused_gelu_bias = args.fused_gelu_bias
    config.dense_seq_output = args.dense_seq_output
    config.unpad = args.unpad
    config.pad = args.pad
    config.fuse_qkv = not args.disable_fuse_qkv
    config.fuse_scale = not args.disable_fuse_scale
    config.fuse_mask = not args.disable_fuse_mask
    config.fuse_dropout = args.enable_fuse_dropout
    config.apex_softmax = not args.disable_apex_softmax
    config.enable_stream = args.enable_stream
    if config.fuse_mask == True: config.apex_softmax = True
    if config.pad == False: config.enable_stream = True
    if config.unpad == True: config.fused_mha = False

    # Padding for divisibility by 8
    if config.vocab_size % 8 != 0:
        config.vocab_size += 8 - (config.vocab_size % 8)

    # Load from Pyt checkpoint - either given as init_checkpoint, or picked up from output_dir if found
    if args.init_checkpoint is not None or found_resume_checkpoint(args):
        # Prepare model

        model = BertForPreTraining(config)
        if args.init_checkpoint is None: # finding checkpoint in output_dir
            checkpoint_str = "phase2_ckpt_*.pt" if args.phase2 else "phase1_ckpt_*.pt"
            model_names = [f for f in glob.glob(os.path.join(args.output_dir, checkpoint_str))]
            global_step = max([int(x.split('.pt')[0].split('_')[-1].strip()) for x in model_names])
            args.resume_step = global_step #used for throughput computation

            resume_init_checkpoint = os.path.join(args.output_dir, checkpoint_str.replace("*", str(global_step)))
            print("Setting init checkpoint to %s - which is the latest in %s" %(resume_init_checkpoint, args.output_dir))
            checkpoint=torch.load(resume_init_checkpoint, map_location="cpu")
        else:
            checkpoint=torch.load(args.init_checkpoint, map_location="cpu")["model"]

        # Fused MHA requires a remapping of checkpoint parameters
        if config.fused_mha:
            checkpoint_remapped = remap_attn_parameters(checkpoint)
            model.load_state_dict(checkpoint_remapped, strict=False)
        else:
            model.load_state_dict(checkpoint, strict=True)
    else: #Load from TF Checkpoint
        model = BertForPreTraining.from_pretrained(args.init_tf_checkpoint, from_tf=True, config=config)


    model.to(device)
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'gamma', 'beta', 'LayerNorm']

    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay_rate},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}]

    mlperf_logger.log_event(key=mlperf_logger.constants.OPT_BASE_LR,
                            value=args.learning_rate, sync=False)
    optimizer = FusedLAMB(optimizer_grouped_parameters,
                          lr=args.learning_rate,
                          betas=(args.opt_lamb_beta_1, args.opt_lamb_beta_2))
    mlperf_logger.log_event(key='opt_epsilon', value=optimizer.defaults['eps'],
                            sync=False)
    b1, b2 = optimizer.defaults['betas']
    mlperf_logger.log_event(key='opt_lamb_beta_1', value=b1, sync=False)
    mlperf_logger.log_event(key='opt_lamb_beta_2', value=b2, sync=False)
    mlperf_logger.log_event(key='opt_lamb_weight_decay_rate',
                            value=optimizer.defaults['weight_decay'],
                            sync=False)

    if args.warmup_steps == 0:
        warmup_steps = int(args.max_steps * args.warmup_proportion)
        warmup_start = 0
    else:
        warmup_steps = args.warmup_steps
        warmup_start = args.start_warmup_step
    lr_scheduler = LinearWarmupPolyDecayScheduler(optimizer, start_warmup_steps=warmup_start, warmup_steps=warmup_steps,
                                                  total_steps=args.max_steps, end_learning_rate=0.0, degree=1.0)
    
                           
    if args.fp16:

        if args.loss_scale == 0:
            model, optimizer = amp.initialize(model, optimizer, opt_level="O2", loss_scale="dynamic")
        else:
            model, optimizer = amp.initialize(model, optimizer, opt_level="O2", loss_scale=args.loss_scale)
        amp._amp_state.loss_scalers[0]._loss_scale = float(os.getenv("INIT_LOSS_SCALE", 2**20))


    if found_resume_checkpoint(args):
        optimizer.load_state_dict(checkpoint['optimizer']) #restores m,v states (only if resuming checkpoint, not for init_checkpoint and init_tf_checkpoint for now)

        # Restore AMP master parameters          
        if args.fp16:
            optimizer._lazy_init_maybe_master_weights()
            optimizer._amp_stash.lazy_init_called = True
            optimizer.load_state_dict(checkpoint['optimizer'])
            for param, saved_param in zip(amp.master_params(optimizer), checkpoint['master params']):
                param.data.copy_(saved_param.data)

    if args.local_rank != -1:
        if not args.allreduce_post_accumulation:
            model = DDP(model, message_size=250000000, gradient_predivide_factor=torch.distributed.get_world_size())
        else:
            flat_dist_call([param.data for param in model.parameters()], torch.distributed.broadcast, (0,) )

    return model, optimizer, lr_scheduler, checkpoint, global_step
Exemple #13
0
    def train_online_distillation_logit(self):
        global_step = self.snapshot.global_step or 0

        if self.is_main_process():
            print("SEED {}".format(self.args.seed))
            logger.info("***** Running training *****")
            # logger.info("  Num examples = %d", len(train_data))
            logger.info("  Batch size = %d", self.args.train_batch_size)
            print("  LR = ", self.args.learning_rate)
            print("  Online Distillation")
            print("Training. . .")

        self.model.train()
        average_loss = 0.0  # averaged loss every self.args.log_freq steps
        average_dloss_0 = 0.0
        average_dloss_1 = 0.0
        epoch = 0
        begin = None

        # Note: We loop infinitely over epochs, termination is handled via
        #       iteration count
        rng = random.Random(self.args.data_seed)
        cnt = 0
        with ThreadPoolExecutor(1) as pool:
            while True:
                cnt += 1

                step = global_step
                if self.args.phase2:
                    step += self.args.phase1_end_step
                if step < self.args.burnin_steps:
                    dataset_future, f_start_id, files, data_file = \
                        self.init_dataloader(epoch, pool)
                    use_same_data = False
                else:
                    torch.manual_seed(self.args.data_seed + cnt)
                    dataset_future, f_start_id, files, data_file = \
                        self.init_dataloader(epoch, pool, rng)
                    use_same_data = True
                previous_file = data_file
                train_dataloader, _ = dataset_future.result(timeout=None)

                overflow_buf = torch.cuda.IntTensor([0])

                for f_id in range(f_start_id + 1, len(files)):
                    logger.info("file no %s file %s" % (f_id, previous_file))
                    dataset_future, data_file = \
                        self.update_dataloader(pool, f_id, files)
                    previous_file = data_file

                    for batch in train_dataloader:
                        if begin is None:
                            begin = time.time()
                        step = global_step
                        if self.args.phase2:
                            step += self.args.phase1_end_step
                        if step == self.args.burnin_steps and \
                                not use_same_data:
                            break

                        batch = [t.to(self.device) for t in batch]
                        _, _, _, masked_lm_labels, _ = batch

                        aout0 = None
                        aout1 = None
                        if step < self.args.burnin_steps:
                            loss = self.forward(self.model, batch)
                            dloss0 = torch.zeros(())
                            dloss1 = torch.zeros(())
                        else:
                            out0, out1 = self.forward(self.model,
                                                      batch,
                                                      calc_loss=False)
                            mask = masked_lm_labels.view(-1)

                            c = out0.shape[-1]
                            # Send logit that are not maksed
                            dout0 = out0.view(-1, c)
                            dout0 = dout0[mask != -1]
                            with torch.no_grad():
                                aout0 = dout0.detach().clone()
                                aout1 = out1.detach().clone()
                                flat_dist_call([aout0, aout1],
                                               torch.distributed.all_reduce,
                                               (torch.distributed.ReduceOp.SUM,
                                                self.equalize_data_group))
                                aout0 = aout0 * self.size - dout0
                                aout1 = aout1 * self.size - out1
                            loss = self.loss(out0, out1, batch)
                            dloss0 = \
                                self.compute_distillation_loss(dout0, aout0)
                            dloss1 = \
                                self.compute_distillation_loss(out1, aout1)
                            dloss = dloss0 + dloss1
                            loss = loss + \
                                self.args.distillation_weight * dloss
                        self.backward(loss)

                        self.all_reduce(overflow_buf)
                        global_step = self.take_optimizer_step(global_step)

                        average_loss += loss.item()
                        average_dloss_0 += dloss0.item()
                        average_dloss_1 += dloss1.item()
                        if global_step % self.args.log_freq == 0:
                            divisor = self.args.log_freq
                            if self.is_main_process():
                                print(
                                    "Team: {} Step:{} Average Loss = {} Average dLoss = {} {}"
                                    .format(self.team, global_step,
                                            average_loss / divisor,
                                            average_dloss_0 / divisor,
                                            average_dloss_1 / divisor))
                            average_loss = 0
                            average_dloss_0 = 0
                            average_dloss_1 = 0

                        if global_step >= self.args.max_steps or \
                            (global_step %
                             self.args.num_steps_per_checkpoint) == 0:
                            if self.team_rank == 0:
                                # Save a trained model
                                logger.info("** ** Saving model ** **")
                                self.snapshot.save(global_step, f_id, files)

                        if global_step >= self.args.max_steps:
                            del train_dataloader
                            torch.distributed.barrier()
                            if torch.distributed.get_rank() == 0:
                                print(
                                    "Total time taken {}".format(time.time() -
                                                                 begin))
                            return self.args

                    del train_dataloader
                    # Make sure pool has finished and switch train_dataloader
                    # NOTE: Will block until complete
                    train_dataloader, data_file = dataset_future.result(
                        timeout=None)

                    if step == self.args.burnin_steps and not use_same_data:
                        break

                epoch += 1
Exemple #14
0
 def prepare_snapshot(self):
     self.snapshot = Snapshot(self.args, self.model, self.another_model,
                              self.optimizer, self.team)
     flat_dist_call([param.data for param in self.model.parameters()],
                    torch.distributed.broadcast,
                    (self.team_master, self.local_group))