def __init__(self): #Total number of people in population self.M = 1000 numInitialInfected = 5 #The graph is one in which edges represent a contact undirected = True self.graph = HIVGraph(self.M, undirected) for i in range(self.M): vertex = self.graph.getVertex(i) #Set the infection time of a number of individuals to 0 if i < numInitialInfected: vertex[HIVVertices.stateIndex] = HIVVertices.infected p = 0.01 generator = ErdosRenyiGenerator(p) self.graph = generator.generate(self.graph) perm1 = numpy.random.permutation(self.M) perm2 = numpy.random.permutation(self.M) sizes = [200, 300, 500, 1000] self.summary1 = [] self.summary2 = [] for size in sizes: self.summary1.append(self.graph.subgraph(perm1[0:size])) self.summary2.append(self.graph.subgraph(perm2[0:int(size/10)])) print(self.graph)
sigmaSqSum = (sigma[0:r2]**2).sum() bound = gammaSqSum + lmbdaSqSum - 2*sigmaSqSum print("r=" + str(r)) print("gammaSqSum=" + str(gammaSqSum)) print("lmbdaSqSum=" + str(lmbdaSqSum)) print("sigmaSqSum=" + str(sigmaSqSum)) return bound #Change to work with real Laplancian numRows = 100 graph = SparseGraph(GeneralVertexList(numRows)) p = 0.1 generator = ErdosRenyiGenerator(p) graph = generator.generate(graph) print(graph) AA = graph.normalisedLaplacianSym() p = 0.001 generator.setP(p) graph = generator.generate(graph, requireEmpty=False) AA2 = graph.normalisedLaplacianSym()
""" Name: Generate Graph: Author: Jia_qiu Wang(王佳秋) Data: December, 2016 function: """ from apgl.graph.DenseGraph import DenseGraph from apgl.graph.GeneralVertexList import GeneralVertexList from apgl.generator.ErdosRenyiGenerator import * numVertices = 20 graph = DenseGraph(GeneralVertexList(numVertices)) p = 0.2 generator = ErdosRenyiGenerator(p) graph = generator.generate(graph)
bound = gammaSqSum + lmbdaSqSum - 2 * sigmaSqSum print("r=" + str(r)) print("gammaSqSum=" + str(gammaSqSum)) print("lmbdaSqSum=" + str(lmbdaSqSum)) print("sigmaSqSum=" + str(sigmaSqSum)) return bound #Change to work with real Laplancian numRows = 100 graph = SparseGraph(GeneralVertexList(numRows)) p = 0.1 generator = ErdosRenyiGenerator(p) graph = generator.generate(graph) print(graph) AA = graph.normalisedLaplacianSym() p = 0.001 generator.setP(p) graph = generator.generate(graph, requireEmpty=False) AA2 = graph.normalisedLaplacianSym() U = AA2 - AA #print(U)