Exemple #1
0
def getLabels(data):
    labels = db.Labels(data['user'], data['hub'], data['track'], data['ref'])
    labelsDf = labels.getInBounds(data['ref'], data['start'], data['end'])
    if len(labelsDf.index) < 1:
        return []

    labelsDf = labelsDf[labelColumns]
    labelsDf.columns = jbrowseLabelColumns

    return labelsDf.to_dict('records')
Exemple #2
0
def stats():
    chroms = labels = 0

    for key in db.Labels.db_key_tuples():
        labelsDf = db.Labels(*key).get()

        if labelsDf.empty:
            continue

        chroms = chroms + 1

        labels = labels + len(labelsDf.index)

    return chroms, labels
Exemple #3
0
def removeLabel(data):
    toRemove = pd.Series({
        'chrom': data['ref'],
        'chromStart': data['start'],
        'chromEnd': data['end']
    })

    txn = db.getTxn()
    labels = db.Labels(data['user'], data['hub'], data['track'], data['ref'])
    removed, after = labels.remove(toRemove, txn=txn)
    db.Prediction('changes').increment(txn=txn)
    Models.updateAllModelLabels(data, after)
    txn.commit()
    return removed.to_dict()
Exemple #4
0
def moreHubInfo(request):
    userid = request.authenticated_userid
    query = request.matchdict
    hubName = query['hub']

    myKeys = db.Labels.keysWhichMatch(userid, hubName)
    num_labels = 0
    labels = {}
    for key in myKeys:
        num_labels += db.Labels(*key).get().shape[0]
        labels[(key[2], key[3])] = db.Labels(*key).get().to_html()

    thisHubInfo = db.HubInfo(userid, hubName).get()

    tracks = []

    return {
        'user': userid,
        'hubName': hubName,
        'hubInfo': thisHubInfo,
        'numLabels': num_labels,
        'tracks': tracks,
        'labels': labels
    }
Exemple #5
0
def updateLabel(data):
    label = data['label']

    updateLabel = pd.Series({
        'chrom': data['ref'],
        'chromStart': data['start'],
        'chromEnd': data['end'],
        'annotation': label
    })
    txn = db.getTxn()
    labelDb = db.Labels(data['user'], data['hub'], data['track'], data['ref'])
    item, labels = labelDb.add(updateLabel, txn=txn)
    db.Prediction('changes').increment(txn=txn)
    Models.updateAllModelLabels(data, labels)
    txn.commit()
    return item.to_dict()
Exemple #6
0
def publicHubs(request):
    userid = request.authenticated_userid

    everyKey = db.HubInfo.keysWhichMatch(db.HubInfo)

    hubNames = list(map(lambda tuple: tuple[1], everyKey))

    hubInfos = {}
    for key in everyKey:
        currentHub = db.HubInfo(key[0], key[1]).get()

        if 'isPublic' in currentHub.keys() and currentHub['isPublic']:
            currentHub['labels'] = 0
            for labelKey in db.Labels.keysWhichMatch(key[0], key[1]):
                currentHub['labels'] += db.Labels(*labelKey).get().shape[0]

            currentHub['owner'] = key[0]
            hubInfos['{hubName}'.format(hubName=key[1])] = currentHub

    return {"user": userid, "HubNames": hubNames, "hubInfos": hubInfos}
Exemple #7
0
def putModel(data):
    modelData = pd.read_json(data['modelData'])
    modelData.columns = modelColumns
    modelInfo = data['modelInfo']
    problem = modelInfo['problem']
    penalty = data['penalty']
    user = modelInfo['user']
    hub = modelInfo['hub']
    track = modelInfo['track']

    txn = db.getTxn()
    db.Model(user, hub, track, problem['chrom'], problem['chromStart'],
             penalty).put(modelData, txn=txn)
    labels = db.Labels(user, hub, track, problem['chrom']).get()
    errorSum = calculateModelLabelError(modelData, labels, problem, penalty)
    db.ModelSummaries(user, hub, track, problem['chrom'],
                      problem['chromStart']).add(errorSum, txn=txn)
    txn.commit()

    return modelInfo
Exemple #8
0
def saveLabelGroup(group, user, hub, track, genome, coverageUrl):
    group = group.sort_values('chromStart', ignore_index=True)

    group['annotation'] = group.apply(fixNoPeaks, axis=1)

    chrom = group['chrom'].loc[0]

    txn = db.getTxn()

    db.Labels(user, hub, track['track'], chrom).put(group, txn=txn)

    chromProblems = Tracks.getProblemsForChrom(genome, chrom, txn)

    withLabels = chromProblems.apply(checkIfProblemHasLabels, axis=1, args=(group,))

    doPregen = chromProblems[withLabels]

    submitPregenWithData(doPregen, user, hub, track, coverageUrl)

    txn.commit()
Exemple #9
0
def myHubs(request):
    userid = request.authenticated_userid
    everyKey = db.HubInfo.keysWhichMatch(db.HubInfo)
    hubInfos = Hubs.getHubInfos(everyKey, userid)

    labels = {}
    usersdict = {}
    permissions = {}

    for hubName in hubInfos:

        currHubInfo = hubInfos[hubName]
        owner = currHubInfo['owner']
        usersdict[hubName] = currHubInfo[
            'users'] if 'users' in currHubInfo.keys() else []

        everyLabelKey = db.Labels.keysWhichMatch(owner, hubName)

        num_labels = 0
        for key in everyLabelKey:
            if key[0] == userid or userid in hubInfos[key[1]]['users']:
                num_labels += db.Labels(*key).get().shape[0]

        labels[hubName] = num_labels

        # get each co users permissions
        for couser in usersdict[hubName]:
            permissions[(hubName,
                         couser)] = db.Permissions(owner, hubName,
                                                   couser).get()

    return {
        "user": userid,
        "hubInfos": hubInfos,
        "usersdict": usersdict,
        "permissions": permissions,
        "labels": labels
    }
Exemple #10
0
def addLabel(data):
    label = 'unknown'
    for i in range(100):
        print("#################################################")
    print("THIS IS THE DATA", data)
    for i in range(10):
        print("#################################################")

    # Duplicated because calls from updateLabel are causing freezing
    newLabel = pd.Series({
        'chrom': data['ref'],
        'chromStart': data['start'],
        'chromEnd': data['end'],
        'annotation': label
    })

    txn = db.getTxn()
    item, labels = db.Labels(data['user'], data['hub'], data['track'],
                             data['ref']).add(newLabel, txn=txn)
    db.Prediction('changes').increment(txn=txn)
    Models.updateAllModelLabels(data, labels)
    txn.commit()
    return data
Exemple #11
0
def generateLOPARTModel(data, problem):
    user = data['user']
    hub = data['hub']
    track = data['track']
    chrom = data['ref']
    blockStart = data['start']
    blockEnd = data['end']
    scale = data['scale']
    hubInfo = db.HubInfo(user, hub).get()
    trackUrl = hubInfo['tracks'][data['track']]['url']
    datapoints = data['width']

    start = max(data['visible']['start'], problem['chromStart'])
    end = min(data['visible']['end'], problem['chromEnd'])

    scaledBins = int(scale * (end - start))

    sumData = bw.bigWigSummary(trackUrl, chrom, start, end, scaledBins)
    if len(sumData) < 1:
        return []

    dbLabels = db.Labels(user, hub, track, chrom)
    labels = dbLabels.getInBounds(chrom, start, end)
    denom = end - start

    if len(labels.index) < 1:
        labelsToUse = pd.DataFrame({'start': [1], 'end': [2], 'change': [-1]})
    else:
        lopartLabels = labels[(labels['annotation'] != 'unknown')
                              & (labels['annotation'] != 'peak')]

        if len(lopartLabels.index) < 1:
            labelsToUse = pd.DataFrame({
                'start': [1],
                'end': [2],
                'change': [-1]
            })
        else:
            labelsToUse = labels.apply(convertLabelsToLopart,
                                       axis=1,
                                       args=(start, end, denom, scaledBins))

    lopartOut = LOPART.runSlimLOPART(sumData, labelsToUse,
                                     getLOPARTPenalty(data))

    if lopartOut.empty:
        return []

    lopartPeaks = lopartToPeaks(lopartOut)

    if lopartPeaks.empty:
        return []

    blockBinStart = round((blockStart - start) * scale)
    blockBinEnd = round((blockEnd - start) * scale)

    isInBounds = lopartPeaks.apply(checkBlockInBounds,
                                   axis=1,
                                   args=(blockBinStart, blockBinEnd))

    lopartInBlock = lopartPeaks[isInBounds].copy()

    if lopartInBlock.empty:
        return []

    lopartInBlock['ref'] = chrom
    lopartInBlock['type'] = 'lopart'

    return convertLopartOutToJbrowse(lopartInBlock, blockBinStart, blockBinEnd,
                                     datapoints)