Exemple #1
0
def main():

    logger = get_root_logger()
    get_header(logger, 'LOADING PROJECTIONS')

    client = APIClient()

    # grab dataframe shape from a trial run
    data = client.get_data('weekly-projections', 'json', 'QB')
    test_df = json_normalize(data['Projections'])

    # get DF structure from columns in test_df
    cols = test_df.columns
    df = DataFrame(columns=cols)

    # grab current week
    current_week = test_df.week.values[0]

    # loop through all weeks up to current week
    for wk in [str(x) for x in range(int(current_week))]:
        logger.info('Processing projections for week {0}'.format(int(wk) + 1))
        # loop through all positions
        for pos in ['QB', 'RB', 'WR', 'TE', 'K', 'DEF']:
            tmp_data = client.get_data('weekly-projections', 'json', pos, wk)
            tmp_df = json_normalize(tmp_data['Projections'])
            df = df.append(tmp_df)

    # import this df directly to PG DB
    conn = DBClient()
    conn.load(df, 'projections', schema='raw', if_exists='replace')
Exemple #2
0
    def extract(self, service, key):

        # pull data from API
        client = APIClient()
        data = client.get_data(service)
        df = json_normalize(data[key])

        return df
Exemple #3
0
def main():

    logger = get_root_logger()
    get_header(logger, "Importing Bye weeks")

    client = APIClient()
    data = client.get_data("byes")

    df = None
    for key in data.keys():
        # build DF the first time through the loop
        if df is None:
            df = json_normalize(data[key])
        # append every other time
        else:
            df = df.append(json_normalize(data[key]))

    # import this df directly to PG DB
    conn = DBClient()
    conn.load(df, "byes", schema="raw", if_exists="replace")
Exemple #4
0
#!/home/jjardel/fb/pkgs/envs/etl/bin/python

from api_client import APIClient
from db_client import DBClient
from pandas.io.json import json_normalize



client = APIClient()
data = client.get_data('nfl-teams')

df = json_normalize(data['NFLTeams'])


# import this df directly to PG DB
conn = DBClient()
conn.load(df, 'teams', schema='raw', if_exists='replace')