Exemple #1
0
 def mock_get_session(*args) -> UnifiedAlchemyMagicMock:
     """ return a session with a bare minimum database that should be good for most unit tests. """
     prediction_model = PredictionModel(
         id=1,
         abbreviation='GDPS',
         projection='latlon.15x.15',
         name='Global Deterministic Prediction System')
     prediction_model_run = PredictionModelRunTimestamp(
         id=1,
         prediction_model_id=1,
         prediction_run_timestamp=time_utils.get_utc_now(),
         prediction_model=prediction_model,
         complete=True)
     session = UnifiedAlchemyMagicMock(
         data=[(
             [
                 mock.call.query(PredictionModel),
                 mock.call.filter(
                     PredictionModel.abbreviation == 'GDPS',
                     PredictionModel.projection == 'latlon.15x.15')
             ],
             [prediction_model],
         ),
               ([mock.call.query(PredictionModelRunTimestamp)],
                [prediction_model_run])])
     return session
Exemple #2
0
def mock_session(monkeypatch):
    """ Mocked out sqlalchemy session object """
    geom = (
        "POLYGON ((-120.525 50.77500000000001, -120.375 50.77500000000001,-120.375 50.62500000000001,"
        " -120.525 50.62500000000001, -120.525 50.77500000000001))")
    shape = shapely.wkt.loads(geom)

    gdps_url = (
        'https://dd.weather.gc.ca/model_gem_global/15km/grib2/lat_lon/00/000/'
        'CMC_glb_TMP_TGL_2_latlon.15x.15_2021020300_P000.grib2')
    gdps_processed_model_run = ProcessedModelRunUrl(url=gdps_url)
    gdps_prediction_model = PredictionModel(
        id=1,
        abbreviation='GDPS',
        projection='latlon.15x.15',
        name='Global Deterministic Prediction System')
    gdps_prediction_model_run = PredictionModelRunTimestamp(
        id=1,
        prediction_model_id=1,
        prediction_run_timestamp=time_utils.get_utc_now(),
        prediction_model=gdps_prediction_model,
        complete=True)

    @contextmanager
    def mock_get_session_gdps_scope(*args) -> Generator[Session, None, None]:

        yield UnifiedAlchemyMagicMock(
            data=[(
                [
                    mock.call.query(PredictionModel),
                    mock.call.filter(
                        PredictionModel.abbreviation == 'GDPS',
                        PredictionModel.projection == 'latlon.15x.15')
                ],
                [gdps_prediction_model],
            ),
                  ([
                      mock.call.query(ProcessedModelRunUrl),
                      mock.call.filter(ProcessedModelRunUrl.url == gdps_url)
                  ], [gdps_processed_model_run]),
                  ([mock.call.query(PredictionModelRunTimestamp)],
                   [gdps_prediction_model_run]),
                  ([mock.call.query(PredictionModelGridSubset)], [
                      PredictionModelGridSubset(
                          id=1,
                          prediction_model_id=gdps_prediction_model.id,
                          geom=from_shape(shape))
                  ])])

    def mock_get_gdps_prediction_model_run_timestamp_records(*args, **kwargs):
        return [(gdps_prediction_model_run, gdps_prediction_model)]

    monkeypatch.setattr(app.db.database, 'get_write_session_scope',
                        mock_get_session_gdps_scope)
    monkeypatch.setattr(env_canada,
                        'get_prediction_model_run_timestamp_records',
                        mock_get_gdps_prediction_model_run_timestamp_records)
Exemple #3
0
def mock_session(monkeypatch):
    """ Mocked out sqlalchemy session object """
    geom = (
        "POLYGON ((-120.525 50.77500000000001, -120.375 50.77500000000001,-120.375 50.62500000000001,"
        " -120.525 50.62500000000001, -120.525 50.77500000000001))")
    shape = shapely.wkt.loads(geom)

    rdps_url = (
        'https://dd.weather.gc.ca/model_gem_regional/10km/grib2/00/034/'
        'CMC_reg_RH_TGL_2_ps10km_2020110500_P034.grib2')
    rdps_processed_model_run = ProcessedModelRunUrl(url=rdps_url)
    rdps_prediction_model = PredictionModel(
        id=2,
        abbreviation='RDPS',
        projection='ps10km',
        name='Regional Deterministic Prediction System')
    rdps_prediction_model_run = PredictionModelRunTimestamp(
        id=1,
        prediction_model_id=2,
        prediction_run_timestamp=time_utils.get_utc_now(),
        prediction_model=rdps_prediction_model,
        complete=True)

    @contextmanager
    def mock_get_session_rdps_scope(*args):

        yield UnifiedAlchemyMagicMock(
            data=[(
                [
                    mock.call.query(PredictionModel),
                    mock.call.filter(PredictionModel.abbreviation == 'RDPS',
                                     PredictionModel.projection == 'ps10km')
                ],
                [rdps_prediction_model],
            ),
                  ([
                      mock.call.query(ProcessedModelRunUrl),
                      mock.call.filter(ProcessedModelRunUrl.url == rdps_url)
                  ], [rdps_processed_model_run]),
                  ([mock.call.query(PredictionModelRunTimestamp)],
                   [rdps_prediction_model_run]),
                  ([mock.call.query(PredictionModelGridSubset)], [
                      PredictionModelGridSubset(
                          id=1,
                          prediction_model_id=rdps_prediction_model.id,
                          geom=from_shape(shape))
                  ])])

    def mock_get_rdps_prediction_model_run_timestamp_records(*args, **kwargs):
        return [(rdps_prediction_model_run, rdps_prediction_model)]

    monkeypatch.setattr(app.db.database, 'get_write_session_scope',
                        mock_get_session_rdps_scope)
    monkeypatch.setattr(env_canada,
                        'get_prediction_model_run_timestamp_records',
                        mock_get_rdps_prediction_model_run_timestamp_records)
Exemple #4
0
def mock_session(monkeypatch):
    """ Mocked out sqlalchemy session object """
    geom = (
        "POLYGON ((-120.525 50.77500000000001, -120.375 50.77500000000001,-120.375 50.62500000000001,"
        " -120.525 50.62500000000001, -120.525 50.77500000000001))")
    shape = shapely.wkt.loads(geom)

    hrdps_url = 'https://dd.weather.gc.ca/model_hrdps/continental/grib2/00/007/' \
        + 'CMC_hrdps_continental_TMP_TGL_2_ps2.5km_2020100700_P007-00.grib2'
    hrdps_processed_model_run = ProcessedModelRunUrl(url=hrdps_url)
    hrdps_prediction_model = PredictionModel(
        id=3,
        abbreviation='HRDPS',
        projection='ps2.5km',
        name='High Resolution Deterministic Prediction System')
    hrdps_prediction_model_run = PredictionModelRunTimestamp(
        id=1,
        prediction_model_id=3,
        prediction_run_timestamp=time_utils.get_utc_now(),
        prediction_model=hrdps_prediction_model,
        complete=True)

    @contextmanager
    def mock_get_session_hrdps_scope(*args):

        yield UnifiedAlchemyMagicMock(
            data=[(
                [
                    mock.call.query(PredictionModel),
                    mock.call.filter(PredictionModel.abbreviation == 'HRDPS',
                                     PredictionModel.projection == 'ps2.5km')
                ],
                [hrdps_prediction_model],
            ),
                  ([
                      mock.call.query(ProcessedModelRunUrl),
                      mock.call.filter(ProcessedModelRunUrl == hrdps_url)
                  ], [hrdps_processed_model_run]),
                  ([mock.call.query(PredictionModelRunTimestamp)],
                   [hrdps_prediction_model_run]),
                  ([mock.call.query(PredictionModelGridSubset)], [
                      PredictionModelGridSubset(
                          id=1,
                          prediction_model_id=hrdps_prediction_model.id,
                          geom=from_shape(shape))
                  ])])

    def mock_get_hrdps_prediction_model_run_timestamp_records(*args, **kwargs):
        return [(hrdps_prediction_model_run, hrdps_prediction_model)]

    monkeypatch.setattr(app.db.database, 'get_write_session_scope',
                        mock_get_session_hrdps_scope)
    monkeypatch.setattr(app.weather_models.env_canada,
                        'get_prediction_model_run_timestamp_records',
                        mock_get_hrdps_prediction_model_run_timestamp_records)
Exemple #5
0
def given_an_instance() -> machine_learning.StationMachineLearning:
    """ Bind the data variable """
    # super weird bug? with pytest_bdd that hooked into isoformat on the coordinate and points fields.
    # tried forever to figure out why - and gave up in the end. removed coordinate and point from
    # feature file and just loading it in here.
    coordinate = _load_json_file(__file__, 'coordinate.json')
    points = _load_json_file(__file__, 'points.json')
    return machine_learning.StationMachineLearning(
        session=None,
        model=PredictionModel(id=1),
        grid=PredictionModelGridSubset(id=1),
        points=points,
        target_coordinate=coordinate,
        station_code=None,
        max_learn_date=datetime.now())
Exemple #6
0
def mock_session(monkeypatch, data):
    """ Mocked out sqlalchemy session """
    if data:
        dirname = os.path.dirname(os.path.realpath(__file__))
        filename = os.path.join(dirname, data)
        with open(filename) as data_file:
            json_data = json.load(data_file)

        predictions = json_data['predictions']
        geometry = json_data['geometry']

        prediction_model = PredictionModel(
            id=1, name='name', abbreviation='abbrev', projection='projection')

        def mock_get_session(*args):
            mock_session = UnifiedAlchemyMagicMock()
            return mock_session

        def mock_get_most_recent_model_run(*args) -> PredictionModelRunTimestamp:
            timestamp = '2020-01-22T18:00:00+00:00'
            return PredictionModelRunTimestamp(id=1,
                                               prediction_model=prediction_model,
                                               prediction_run_timestamp=datetime.fromisoformat(timestamp))

        def mock_get_model_run_predictions(*args):
            shape = shapely.wkt.loads(geometry)
            grid = PredictionModelGridSubset(
                id=1,
                prediction_model_id=prediction_model.id,
                prediction_model=prediction_model,
                geom=from_shape(shape)
            )
            result = []
            for prediction in predictions:
                prediction['prediction_timestamp'] = datetime.fromisoformat(
                    prediction['prediction_timestamp'])
                result.append(
                    (grid, ModelRunGridSubsetPrediction(**prediction)))
            return result
        monkeypatch.setattr(app.db.database, 'get_session', mock_get_session)
        monkeypatch.setattr(app.db.crud, 'get_most_recent_model_run',
                            mock_get_most_recent_model_run)
        monkeypatch.setattr(app.db.crud, 'get_model_run_predictions',
                            mock_get_model_run_predictions)
Exemple #7
0
 def mock_get_session(*args):
     url = (
         'https://dd.weather.gc.ca/model_gem_global/15km/grib2/lat_lon/00/000/'
         'CMC_glb_TMP_TGL_2_latlon.15x.15_2021020300_P000.grib2')
     return UnifiedAlchemyMagicMock(data=[(
         [
             mock.call.query(PredictionModel),
             mock.call.filter(PredictionModel.abbreviation == 'GDPS',
                              PredictionModel.projection == 'latlon.15x.15')
         ],
         [PredictionModel(abbreviation='GDPS', projection='latlon.15x.15')],
     ),
                                          ([
                                              mock.call.query(
                                                  ProcessedModelRunUrl),
                                              mock.call.filter(
                                                  ProcessedModelRunUrl.url
                                                  == url)
                                          ], [ProcessedModelRunUrl()])])
    def mock_get_session(*args):

        prediction_model = PredictionModel(
            id=1,
            abbreviation='GDPS',
            projection='latlon.15x.15',
            name='Global Deterministic Prediction System')

        geometry = (
            "POLYGON ((-120.525 50.77500000000001, -120.375 50.77500000000001,"
            "-120.375 50.62500000000001, -120.525 50.62500000000001, -120.525 50.77500000000001))"
        )
        shape = shapely.wkt.loads(geometry)

        grid = PredictionModelGridSubset(
            id=1,
            prediction_model_id=prediction_model.id,
            prediction_model=prediction_model,
            geom=from_shape(shape))

        date_1 = "2020-07-22T18:00:00+00:00"
        date_2 = "2020-07-22T20:00:00+00:00"
        data = [(
            [
                mock.call.query(PredictionModelGridSubset,
                                ModelRunGridSubsetPrediction, PredictionModel)
            ],
            [
                # 3 on the same hour, testing interpolation and percentiles.
                [
                    grid,
                    ModelRunGridSubsetPrediction(
                        prediction_model_grid_subset_id=grid.id,
                        prediction_timestamp=datetime.fromisoformat(date_1),
                        tmp_tgl_2=[10, 11, 12, 13],
                        rh_tgl_2=[20, 30, 40, 50]), prediction_model
                ],
                [
                    grid,
                    ModelRunGridSubsetPrediction(
                        prediction_model_grid_subset_id=grid.id,
                        prediction_timestamp=datetime.fromisoformat(date_1),
                        tmp_tgl_2=[11, 12, 13, 14],
                        rh_tgl_2=[30, 40, 50, 60]), prediction_model
                ],
                [
                    grid,
                    ModelRunGridSubsetPrediction(
                        prediction_model_grid_subset_id=grid.id,
                        prediction_timestamp=datetime.fromisoformat(date_1),
                        tmp_tgl_2=[9, 10, 11, 12],
                        rh_tgl_2=[20, 30, 40, 50]), prediction_model
                ],
                # 1 on the hour, testing it remains unchanged.
                [
                    grid,
                    ModelRunGridSubsetPrediction(
                        prediction_model_grid_subset_id=grid.id,
                        prediction_timestamp=datetime.fromisoformat(
                            "2020-07-22T19:00:00+00:00"),
                        tmp_tgl_2=[9, 9, 9, 9],
                        rh_tgl_2=[20, 20, 20, 20]), prediction_model
                ],
                # 3 on same hour, same values at each grid point for easy percentile testing.
                [
                    grid,
                    ModelRunGridSubsetPrediction(
                        prediction_model_grid_subset_id=grid.id,
                        prediction_timestamp=datetime.fromisoformat(date_2),
                        tmp_tgl_2=[9, 9, 9, 9],
                        rh_tgl_2=[20, 20, 20, 20]), prediction_model
                ],
                [
                    grid,
                    ModelRunGridSubsetPrediction(
                        prediction_model_grid_subset_id=grid.id,
                        prediction_timestamp=datetime.fromisoformat(date_2),
                        tmp_tgl_2=[10, 10, 10, 10],
                        rh_tgl_2=[21, 21, 21, 21]), prediction_model
                ],
                [
                    grid,
                    ModelRunGridSubsetPrediction(
                        prediction_model_grid_subset_id=grid.id,
                        prediction_timestamp=datetime.fromisoformat(date_2),
                        tmp_tgl_2=[11, 11, 11, 11],
                        rh_tgl_2=[22, 22, 22, 22]), prediction_model
                ]
            ])]
        mock_session = UnifiedAlchemyMagicMock(data=data)
        return mock_session