def polyfit_test(): image = load_images(0, 1, False, 5) spr = spread(image)[0] p = polyfit(image, 10)[0] plt.scatter(range(0, len(spr)), spr) plt.scatter(range(0, len(spr)), np.polyval(p, range(0, len(spr)))) plt.show()
def test_max_sobel(): images = load_images(0, 50, False, 2) sobels = sobel(images, lambda x: x) ages = load_ages() for i in range(0, len(images)): print sobels[i].max() print ages[i]
def plot_spread_sobel(): images = load_images(0, 10, False, 2) spreads = feature_on_cerebrum(images, feature_function=sobel) ages = load_ages() _, ax = plt.subplots(2, 5, sharex=True, sharey=True) ax = ax.flatten() for i in range(0, len(images)): ax[i].scatter(range(0, len(spreads[i])), spreads[i], s=1, marker=",") ax[i].set_title("healthy" if ages[i] == 1 else "ill") plt.show()
def plot_derivatives(): images = load_images(0, 10, False, 5) derivs = derivatives(images) ages = load_ages() _, ax = plt.subplots(2, 5, sharex=True, sharey=True) ax = ax.flatten() for i in range(0, len(images)): ax[i].scatter(range(0, len(derivs[i])), derivs[i], s=1, marker=",") ax[i].set_title("healthy" if ages[i] == 1 else "ill") plt.show()
def smooth_sample_test(): image = load_images(0, 1, False, 5) spr = spread(image)[0] smoothed0 = smooth(spr, 51, "hanning") smoothed1 = smooth(spr, 51, "hanning") smoothed2 = smooth(spr, 25, "hanning") plt.scatter(range(0, len(spr)), spr) # blue plt.scatter(range(0, len(spr)), smoothed1) # black # plt.scatter(range(0, len(spr)), smoothed2) plt.show()
def plot_median_sobel(): images = load_images(0, 50, False, 2) mean = sobel(images, lambda x: [[np.mean(xi)] for xi in x]) vars = sobel(images, variance_feature) ages = load_ages() for i in range(0, len(images)): plt.scatter(median[i][0], variance[i][0], s=1, marker=",", color="blue" if ages[i] == 1 else "red") plt.show()
def plot_sobel(): images = load_images(0, 1, False, 2) image = images[0] print image.shape sx = sp.ndimage.filters.sobel(image, axis=0) print sx.max() sy = sp.ndimage.filters.sobel(image, axis=1) print sy.max() sz = sp.ndimage.filters.sobel(image, axis=2) print sz.max() sob = np.sqrt(sx * sx + sy * sy + sz * sz) sob = sob[:, :, :, 0] # unpack print sob.shape sob = sob[40] plt.imshow(sob, cmap="gray") plt.show()
def find_local_maxima_test(): images = load_images(0, 5, False, 5) spread_data = spread(images) maxima = local_maxima_without_smoothing(images) smoothed_maxima = local_maxima_3(images) print maxima print smoothed_maxima _, ax = plt.subplots(1, 5, sharey=True) ax = ax.flatten() for i in range(5): smoothed = smooth(spread_data[i], window_len=101) ax[i].scatter(range(len(spread_data[i])), spread_data[i], s=1, marker=",") ax[i].scatter(range(len(spread_data[i])), smoothed) ax[i].set_title(maxima[i]) plt.ylim([0, 40]) plt.show()
def plot_half_mask_test(): images = load_images(0, 1, False, 2) border_mask = find_border_mask(images[0]) mask = border_mask - get_shaved_mask(border_mask, 12) heigth = 45 mask = mask[:, :, -heigth:] print np.unique(mask) print np.sum(mask) xs = [] ys = [] zs = [] for x in range(len(mask) / 2): for y in range(len(mask[0])): for z in range(len(mask[0][0])): if mask[x][y][z][0] == 1: xs.append(x) ys.append(y) zs.append(z) xs = np.array(xs) ys = np.array(ys) zs = np.array(zs) fig = plt.figure() ax = fig.gca(projection='3d') ax.set_aspect('equal') ax.scatter(xs, ys, zs) max_range = np.array( [xs.max() - xs.min(), ys.max() - ys.min(), zs.max() - zs.min()]).max() / 2.0 mid_x = (xs.max() + xs.min()) * 0.5 mid_y = (ys.max() + ys.min()) * 0.5 mid_z = (zs.max() + zs.min()) * 0.5 ax.set_xlim(mid_x - max_range, mid_x + max_range) ax.set_ylim(mid_y - max_range, mid_y + max_range) ax.set_zlim(mid_z - max_range, mid_z + max_range) plt.show()
def local_maxima_3_test(): image = load_images(0, 1, False, 5) maxima = local_maxima_3(image) print maxima
def mean_feature_test(): image = load_images(0, 1, False, 5) means = mean_feature(image) print means
def mask_similarity_test(): images = load_images(0, 10, False, 1) for i in range(len(images) - 1): sum_of_difference = np.sum( find_border_mask(images[i]) - find_border_mask(images[i + 1])) print sum_of_difference