def test_raises_error_on_invalid_groundtruth_labels(self):
        similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
        matcher = bipartite_matcher.GreedyBipartiteMatcher()
        box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
        unmatched_cls_target = tf.constant([[0, 0], [0, 0], [0, 0]],
                                           tf.float32)
        target_assigner = targetassigner.TargetAssigner(
            similarity_calc,
            matcher,
            box_coder,
            unmatched_cls_target=unmatched_cls_target)

        prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5]])
        prior_stddevs = tf.constant([[1.0, 1.0, 1.0, 1.0]])
        priors = box_list.BoxList(prior_means)
        priors.add_field('stddev', prior_stddevs)

        box_corners = [[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.9, 0.9],
                       [.75, 0, .95, .27]]
        boxes = box_list.BoxList(tf.constant(box_corners))

        groundtruth_labels = tf.constant([[[0, 1], [1, 0]]], tf.float32)

        with self.assertRaises(ValueError):
            target_assigner.assign(priors,
                                   boxes,
                                   groundtruth_labels,
                                   num_valid_rows=3)
    def test_raises_error_on_incompatible_groundtruth_boxes_and_labels(self):
        similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
        matcher = bipartite_matcher.GreedyBipartiteMatcher()
        box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
        unmatched_cls_target = tf.constant([1, 0, 0, 0, 0, 0, 0], tf.float32)
        target_assigner = targetassigner.TargetAssigner(
            similarity_calc,
            matcher,
            box_coder,
            unmatched_cls_target=unmatched_cls_target)

        prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 0.8],
                                   [0, 0.5, .5, 1.0], [.75, 0, 1.0, .25]])
        prior_stddevs = tf.constant(4 * [4 * [.1]])
        priors = box_list.BoxList(prior_means)
        priors.add_field('stddev', prior_stddevs)

        box_corners = [[0.0, 0.0, 0.5, 0.5], [0.0, 0.0, 0.5, 0.8],
                       [0.5, 0.5, 0.9, 0.9], [.75, 0, .95, .27]]
        boxes = box_list.BoxList(tf.constant(box_corners))

        groundtruth_labels = tf.constant(
            [[0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0],
             [0, 0, 0, 1, 0, 0, 0]], tf.float32)
        result = target_assigner.assign(priors,
                                        boxes,
                                        groundtruth_labels,
                                        num_valid_rows=3)
        (cls_targets, cls_weights, reg_targets, reg_weights, _) = result
        with self.test_session() as sess:
            with self.assertRaisesWithPredicateMatch(
                    tf.errors.InvalidArgumentError,
                    'Groundtruth boxes and labels have incompatible shapes!'):
                sess.run([cls_targets, cls_weights, reg_targets, reg_weights])
    def test_assign_multidimensional_class_targets(self):
        similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
        matcher = bipartite_matcher.GreedyBipartiteMatcher()
        box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
        unmatched_cls_target = tf.constant([[0, 0], [0, 0]], tf.float32)
        target_assigner = targetassigner.TargetAssigner(
            similarity_calc,
            matcher,
            box_coder,
            unmatched_cls_target=unmatched_cls_target)

        prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 0.8],
                                   [0, 0.5, .5, 1.0], [.75, 0, 1.0, .25]])
        prior_stddevs = tf.constant(4 * [4 * [.1]])
        priors = box_list.BoxList(prior_means)
        priors.add_field('stddev', prior_stddevs)

        box_corners = [[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.9, 0.9],
                       [.75, 0, .95, .27]]
        boxes = box_list.BoxList(tf.constant(box_corners))

        groundtruth_labels = tf.constant(
            [[[0, 1], [1, 0]], [[1, 0], [0, 1]], [[0, 1], [1, .5]]],
            tf.float32)

        exp_cls_targets = [[[0, 1], [1, 0]], [[1, 0], [0, 1]], [[0, 0], [0,
                                                                         0]],
                           [[0, 1], [1, .5]]]
        exp_cls_weights = [1, 1, 1, 1]
        exp_reg_targets = [[0, 0, 0, 0], [0, 0, -1, 1], [0, 0, 0, 0],
                           [0, 0, -.5, .2]]
        exp_reg_weights = [1, 1, 0, 1]
        exp_matching_anchors = [0, 1, 3]

        result = target_assigner.assign(priors,
                                        boxes,
                                        groundtruth_labels,
                                        num_valid_rows=3)
        (cls_targets, cls_weights, reg_targets, reg_weights, match) = result
        with self.test_session() as sess:
            (cls_targets_out, cls_weights_out, reg_targets_out,
             reg_weights_out, matching_anchors_out) = sess.run([
                 cls_targets, cls_weights, reg_targets, reg_weights,
                 match.matched_column_indices()
             ])

            self.assertAllClose(cls_targets_out, exp_cls_targets)
            self.assertAllClose(cls_weights_out, exp_cls_weights)
            self.assertAllClose(reg_targets_out, exp_reg_targets)
            self.assertAllClose(reg_weights_out, exp_reg_weights)
            self.assertAllClose(matching_anchors_out, exp_matching_anchors)
            self.assertEquals(cls_targets_out.dtype, np.float32)
            self.assertEquals(cls_weights_out.dtype, np.float32)
            self.assertEquals(reg_targets_out.dtype, np.float32)
            self.assertEquals(reg_weights_out.dtype, np.float32)
            self.assertEquals(matching_anchors_out.dtype, np.int32)
 def _get_agnostic_target_assigner(self):
     similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
     matcher = bipartite_matcher.GreedyBipartiteMatcher()
     box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
     return targetassigner.TargetAssigner(similarity_calc,
                                          matcher,
                                          box_coder,
                                          positive_class_weight=1.0,
                                          negative_class_weight=1.0,
                                          unmatched_cls_target=None)
 def _get_multi_class_target_assigner(self, num_classes):
     similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
     matcher = bipartite_matcher.GreedyBipartiteMatcher()
     box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
     unmatched_cls_target = tf.constant([1] + num_classes * [0], tf.float32)
     return targetassigner.TargetAssigner(
         similarity_calc,
         matcher,
         box_coder,
         positive_class_weight=1.0,
         negative_class_weight=1.0,
         unmatched_cls_target=unmatched_cls_target)
    def test_assign_with_ignored_matches(self):
        # Note: test is very similar to above. The third box matched with an IOU
        # of 0.35, which is between the matched and unmatched threshold. This means
        # That like above the expected classification targets are [1, 1, 0].
        # Unlike above, the third target is ignored and therefore expected
        # classification weights are [1, 1, 0].
        similarity_calc = region_similarity_calculator.IouSimilarity()
        matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
                                               unmatched_threshold=0.3)
        box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
        target_assigner = targetassigner.TargetAssigner(
            similarity_calc, matcher, box_coder)

        prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 0.8],
                                   [0.0, 0.5, .9, 1.0]])
        prior_stddevs = tf.constant(3 * [4 * [.1]])
        priors = box_list.BoxList(prior_means)
        priors.add_field('stddev', prior_stddevs)

        box_corners = [[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.9, 0.9]]
        boxes = box_list.BoxList(tf.constant(box_corners))
        exp_cls_targets = [[1], [1], [0]]
        exp_cls_weights = [1, 1, 0]
        exp_reg_targets = [[0, 0, 0, 0], [0, 0, -1, 1], [0, 0, 0, 0]]
        exp_reg_weights = [1, 1, 0]
        exp_matching_anchors = [0, 1]

        result = target_assigner.assign(priors, boxes)
        (cls_targets, cls_weights, reg_targets, reg_weights, match) = result
        with self.test_session() as sess:
            (cls_targets_out, cls_weights_out, reg_targets_out,
             reg_weights_out, matching_anchors_out) = sess.run([
                 cls_targets, cls_weights, reg_targets, reg_weights,
                 match.matched_column_indices()
             ])

            self.assertAllClose(cls_targets_out, exp_cls_targets)
            self.assertAllClose(cls_weights_out, exp_cls_weights)
            self.assertAllClose(reg_targets_out, exp_reg_targets)
            self.assertAllClose(reg_weights_out, exp_reg_weights)
            self.assertAllClose(matching_anchors_out, exp_matching_anchors)
            self.assertEquals(cls_targets_out.dtype, np.float32)
            self.assertEquals(cls_weights_out.dtype, np.float32)
            self.assertEquals(reg_targets_out.dtype, np.float32)
            self.assertEquals(reg_weights_out.dtype, np.float32)
            self.assertEquals(matching_anchors_out.dtype, np.int32)
    def test_assign_multiclass_unequal_class_weights(self):
        similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
        matcher = bipartite_matcher.GreedyBipartiteMatcher()
        box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
        unmatched_cls_target = tf.constant([1, 0, 0, 0, 0, 0, 0], tf.float32)
        target_assigner = targetassigner.TargetAssigner(
            similarity_calc,
            matcher,
            box_coder,
            positive_class_weight=1.0,
            negative_class_weight=0.5,
            unmatched_cls_target=unmatched_cls_target)

        prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 0.8],
                                   [0, 0.5, .5, 1.0], [.75, 0, 1.0, .25]])
        prior_stddevs = tf.constant(4 * [4 * [.1]])
        priors = box_list.BoxList(prior_means)
        priors.add_field('stddev', prior_stddevs)

        box_corners = [[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.9, 0.9],
                       [.75, 0, .95, .27]]
        boxes = box_list.BoxList(tf.constant(box_corners))

        groundtruth_labels = tf.constant(
            [[0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0],
             [0, 0, 0, 1, 0, 0, 0]], tf.float32)

        exp_cls_weights = [1, 1, .5, 1]
        result = target_assigner.assign(priors,
                                        boxes,
                                        groundtruth_labels,
                                        num_valid_rows=3)
        (_, cls_weights, _, _, _) = result
        with self.test_session() as sess:
            cls_weights_out = sess.run(cls_weights)
            self.assertAllClose(cls_weights_out, exp_cls_weights)
    def __init__(self,
                 is_training,
                 anchor_generator,
                 box_predictor,
                 box_coder,
                 feature_extractor,
                 matcher,
                 region_similarity_calculator,
                 image_resizer_fn,
                 non_max_suppression_fn,
                 score_conversion_fn,
                 classification_loss,
                 localization_loss,
                 classification_loss_weight,
                 localization_loss_weight,
                 normalize_loss_by_num_matches,
                 hard_example_miner,
                 add_summaries=True):
        """SSDMetaArch Constructor.

    TODO: group NMS parameters + score converter into a class and loss
    parameters into a class and write config protos for postprocessing
    and losses.

    Args:
      is_training: A boolean indicating whether the training version of the
        computation graph should be constructed.
      anchor_generator: an anchor_generator.AnchorGenerator object.
      box_predictor: a box_predictor.BoxPredictor object.
      box_coder: a box_coder.BoxCoder object.
      feature_extractor: a SSDFeatureExtractor object.
      matcher: a matcher.Matcher object.
      region_similarity_calculator: a
        region_similarity_calculator.RegionSimilarityCalculator object.
      image_resizer_fn: a callable for image resizing.  This callable always
        takes a rank-3 image tensor (corresponding to a single image) and
        returns a rank-3 image tensor, possibly with new spatial dimensions.
        See builders/image_resizer_builder.py.
      non_max_suppression_fn: batch_multiclass_non_max_suppression
        callable that takes `boxes`, `scores` and optional `clip_window`
        inputs (with all other inputs already set) and returns a dictionary
        hold tensors with keys: `detection_boxes`, `detection_scores`,
        `detection_classes` and `num_detections`. See `post_processing.
        batch_multiclass_non_max_suppression` for the type and shape of these
        tensors.
      score_conversion_fn: callable elementwise nonlinearity (that takes tensors
        as inputs and returns tensors).  This is usually used to convert logits
        to probabilities.
      classification_loss: an object_detection.core.losses.Loss object.
      localization_loss: a object_detection.core.losses.Loss object.
      classification_loss_weight: float
      localization_loss_weight: float
      normalize_loss_by_num_matches: boolean
      hard_example_miner: a losses.HardExampleMiner object (can be None)
      add_summaries: boolean (default: True) controlling whether summary ops
        should be added to tensorflow graph.
    """
        super(SSDMetaArch,
              self).__init__(num_classes=box_predictor.num_classes)
        self._is_training = is_training

        # Needed for fine-tuning from classification checkpoints whose
        # variables do not have the feature extractor scope.
        self._extract_features_scope = 'FeatureExtractor'

        self._anchor_generator = anchor_generator
        self._box_predictor = box_predictor

        self._box_coder = box_coder
        self._feature_extractor = feature_extractor
        self._matcher = matcher
        self._region_similarity_calculator = region_similarity_calculator

        # TODO: handle agnostic mode and positive/negative class weights
        unmatched_cls_target = None
        unmatched_cls_target = tf.constant([1] + self.num_classes * [0],
                                           tf.float32)
        self._target_assigner = target_assigner.TargetAssigner(
            self._region_similarity_calculator,
            self._matcher,
            self._box_coder,
            positive_class_weight=1.0,
            negative_class_weight=1.0,
            unmatched_cls_target=unmatched_cls_target)

        self._classification_loss = classification_loss
        self._localization_loss = localization_loss
        self._classification_loss_weight = classification_loss_weight
        self._localization_loss_weight = localization_loss_weight
        self._normalize_loss_by_num_matches = normalize_loss_by_num_matches
        self._hard_example_miner = hard_example_miner

        self._image_resizer_fn = image_resizer_fn
        self._non_max_suppression_fn = non_max_suppression_fn
        self._score_conversion_fn = score_conversion_fn

        self._anchors = None
        self._add_summaries = add_summaries