def main(): if not mlboard: print_fun("Skipped: no mlboard detected") return parser = argparse.ArgumentParser() add_common_args(parser) parser.add_argument( 'model_name', help='Exported model name.', type=str, ) parser.add_argument( 'model_version', help='Exported model version.', type=str, ) args = parser.parse_args() utils.print_fun('Uploading model...') mlboard.model_upload(args.model_name, args.model_version, args.classifiers_dir) update_task_info({ 'model_reference': catalog_ref(args.model_name, 'mlmodel', args.model_version) }) utils.print_fun("New model uploaded as '%s', version '%s'." % (args.model_name, args.model_version))
def main(): parser = argparse.ArgumentParser() add_common_args(parser) add_bg_remove_args(parser) add_detector_args(parser) add_image_args(parser) args = parser.parse_args() detector = detector_args(args) image = image_args(detector, args) image.process()
def main(): parser = argparse.ArgumentParser() utils.configure_logging() add_common_args(parser) add_bg_remove_args(parser) add_detector_args(parser) add_listener_args(parser) add_video_args(parser) add_video_notify_args(parser) add_notify_args(parser) args = parser.parse_args() detector = detector_args(args) listener = listener_args(args) camera = video_args(detector, listener, args) init_notifier_args(args) init_in_video_detected(args) camera.start()
def main(): parser = argparse.ArgumentParser() add_aligner_args(parser) add_common_args(parser) add_classifier_args(parser) add_bg_remove_args(parser) utils.add_normalization_args(parser) parser.add_argument( '--skip_align', help= 'Skip alignment for source images from input dir, only calculate embeddings and train classifiers.', action='store_true', ) parser.add_argument( '--skip_train', help= 'Skip calculating embeddings and training, only alignment for source images from input dir.', action='store_true', ) parser.add_argument( '--align_images_limit', type=int, help='Set limit for processed images in alignment.', default=None, ) parser.add_argument( '--model_name', help='Exported model name.', type=str, default=None, ) parser.add_argument( '--model_version', help='Exported model version.', type=str, default=None, ) parser.add_argument( '--complementary', help='Complementary align and training.', action='store_true', ) parser.add_argument( '--best_threshold', help='Find best threshold.', action='store_true', ) args = parser.parse_args() if not args.skip_align: al = aligner_args(args) al.align(args.align_images_limit) if not args.skip_train: clf = classifiers_args(args) clf.train() from app.control.client import Client cl = Client() cl.call('reload_classifiers') if args.model_name is not None and args.model_version is not None: from app.mlboard import mlboard, update_task_info, catalog_ref utils.print_fun('Uploading model...') model_version = args.model_version if args.device not in args.model_version: model_version = args.model_version + '-%s' % args.device mlboard.model_upload(args.model_name, model_version, args.classifiers_dir) update_task_info({ 'model_reference': catalog_ref(args.model_name, 'mlmodel', args.model_version) }) utils.print_fun("New model uploaded as '%s', version '%s'." % (args.model_name, args.model_version))
import argparse from app.recognize import add_common_args from app.tools import downloader parser = argparse.ArgumentParser() add_common_args(parser) parser.add_argument( 'classifiers_url', type=str, help='URL for the pretrained classifiers', ) args = parser.parse_args() err = downloader.Downloader(args.classifiers_url, args.classifiers_dir).extract() if err is not None: raise ValueError(err)