Exemple #1
0
 def get_nearest_point_with_index(self, point, min_index):
     lane_id, index = self.lane_info[min_index]
     lane_line = self.__lanes_table[lane_id].centerline
     line = Line.init_from_pb(
         lane_line.point[index], lane_line.point[index + 1])
     nearest, _ = line.get_nearest_point_on_line(point)
     return nearest
Exemple #2
0
 def find_line(self, output, **data):
     lane_id, index = output[0]
     lane_line = self.__lanes_table[lane_id].centerline
     line = Line.init_from_pb(
         lane_line.point[index], lane_line.point[index + 1])
     name = data['func_name']
     data.pop('func_name')
     squared_distance = line.__getattribute__(name)(**data)
     return squared_distance
Exemple #3
0
    def get_rough_lane_right_width(self, id, s):
        lane = self.get_lane_by_id(id)
        if lane is None:
            return False, 100000.0
        has_found, lane_point = self.get_point_and_lane_heading_by_s(id, s)
        if not has_found:
            return False, 100000.0

        if lane.right_boundary_id == 0:
            return False, 100000.0
        right_lane_id = lane.right_boundary_id
        right_boundary = self.get_lane_boundary_by_id(right_lane_id)
        if right_boundary is None:
            return False, 100000.0
        right_boundary_points = right_boundary.boundary.point
        min_square_distance = 100000
        min_index = -1
        for idx, boundary_point in enumerate(right_boundary_points):
            p = Point.init_from_other_type(boundary_point)
            square_distance = p.square_distance_to(lane_point)
            if square_distance < min_square_distance:
                min_square_distance = square_distance
                min_index = idx
        if min_index == -1:
            return False, 100000.0

        if min_index == 0 and len(right_boundary_points) == 1:
            return True, math.sqrt(min_square_distance)

        flag = False
        square_right_width = 100000.0
        if min_index != 0:
            line = Line.init_from_pb(
                right_boundary_points[min_index], right_boundary_points[min_index - 1])
            square_right_width = line.get_mini_square_distance(lane_point)
            flag = True
        if min_index < len(right_boundary_points) - 1:
            line = Line.init_from_pb(
                right_boundary_points[min_index], right_boundary_points[min_index + 1])
            square_distance = line.get_mini_square_distance(lane_point)
            if (flag and square_distance < square_right_width) or (not flag):
                square_right_width = square_distance
            flag = True
        return flag, math.sqrt(square_right_width)
Exemple #4
0
    def get_nearest_point(self, point):
        output = self.kdtree.query_with_k(point, k=4)
        if len(output[0]) <= 0:
            return []

        fix_data = {"pt": point,
                    "func_name": "get_mini_square_distance"}
        pfunc = partial(self.find_line, **fix_data)
        distance_list = map(pfunc, output[0])
        min_pack = np.argmin(distance_list)
        min_id, min_index = output[0][min_pack][0]
        lane_line = self.__lanes_table[min_id].centerline
        line = Line.init_from_pb(
            lane_line.point[min_index], lane_line.point[min_index + 1])
        nearest_point, _ = line.get_nearest_point_on_line(point)
        return nearest_point
Exemple #5
0
    def get_nearest_lane(self, point):
        output = self.kdtree.query_with_k(point, k=4)
        if len(output[0]) <= 0:
            return False, [], None

        fix_data = {"pt": point,
                    "func_name": "get_mini_square_distance"
                    }
        pfunc = partial(self.find_line, **fix_data)
        distance_list = map(pfunc, output[0])
        min_pack = np.argmin(distance_list)
        min_id, min_index = output[0][min_pack][0]
        lane_line = self.__lanes_table[min_id].centerline
        line = Line.init_from_pb(
            lane_line.point[min_index], lane_line.point[min_index + 1])
        s, l = line.get_sl(point)
        s = self.get_accumulate_distance(min_id, min_index) + s
        return True, [s, l], min_id
Exemple #6
0
    def get_nearest_lane_with_heading(self, point, heading):
        output = self.kdtree.query_with_k(point, k=4)
        if len(output[0]) <= 0:
            return False, [], None

        heading_vec = Point(np.cos(heading), np.sin(heading))

        fix_data = {"pt": point,
                    "func_name": "combo_inner_product",
                    "heading": heading_vec}
        pfunc = partial(self.find_line, **fix_data)
        distance_list = list(map(pfunc, output[0]))
        min_pack = distance_list.index(min(distance_list))
        min_id, min_index = output[0][min_pack][0]

        lane_line = self.__lanes_table[min_id].centerline
        line = Line.init_from_pb(
            lane_line.point[min_index], lane_line.point[min_index + 1])
        s, l = line.get_sl(point)
        s = self.get_accumulate_distance(min_id, min_index) + s
        return True, [s, l], min_id
Exemple #7
0
    def get_point_and_lane_heading_by_s(self, id, s):
        lane = self.get_lane_by_id(id)
        if lane is None:
            return False, None
        if lane.centerline is None or len(lane.centerline.point) < 1:
            return False, None
        if s <= self.centerline_s_dict[id][0]:
            return True, Point.init_from_other_type(lane.centerline.point[0])
        if s >= self.centerline_s_dict[id][-1]:
            return True, Point.init_from_other_type(lane.centerline.point[-1])

        index = np.array(self.centerline_s_dict[id]).searchsorted(s)
        delta_s = self.centerline_s_dict[id][index] - s
        if delta_s < 1e-10:
            return True, Point.init_from_other_type(lane.centerline.point[index])

        p2 = Point.init_from_other_type(lane.centerline.point[index])
        p1 = Point.init_from_other_type(lane.centerline.point[index - 1])
        unit_directions_ = Line(p1, p2).unit_v

        smooth_point = p2 - unit_directions_ * delta_s

        return True, smooth_point