Exemple #1
0
 def from2Dinto1D(self, fftarray):
     ellipratio = self.ellipseParams['a'] / self.ellipseParams['b']
     ellipangle = math.degrees(self.ellipseParams['alpha'])
     pixelrdata, PSDarray = ctftools.ellipticalAverage(
         fftarray,
         ellipratio,
         ellipangle,
         self.params['ringwidth'],
         full=False)
     return self.removeBlackCenter(pixelrdata * self.freq, PSDarray)
	def from2Dinto1D(self, fftarray):
		if self.params['astig'] is False and self.ellipseParams is None:
			### simple case: do a rotational average
			pixelrdata, PSDarray = ctftools.rotationalAverage(fftarray, self.params['ringwidth'], full=False)
			return self.removeBlackCenter(pixelrdata*self.freq, PSDarray)

		if self.ellipseParams is None:
			### hard case: find ellipse and do a elliptical average
			blurArray = copy.deepcopy(fftarray)
			for blurIter in range(2):
				### each time the image is blurred more
				blurArray = self.rotationBlur(blurArray, angle=1, numIter=3)
			self.findEllipseEdge(blurArray)
			if self.ellipseParams is None:
				apDisplay.printWarning("Failed to find ellipse, continuing with no astig")
				pixelrdata, PSDarray = ctftools.rotationalAverage(fftarray, self.params['ringwidth'], full=False)
				return self.removeBlackCenter(pixelrdata*self.freq, PSDarray)

		ellipratio = self.ellipseParams['a']/self.ellipseParams['b']
		ellipangle = math.degrees(self.ellipseParams['alpha'])
		pixelrdata, PSDarray = ctftools.ellipticalAverage(fftarray, ellipratio, ellipangle, 
			self.params['ringwidth'], full=False)
		return self.removeBlackCenter(pixelrdata*self.freq, PSDarray)
 def from2Dinto1D(self, fftarray):
         ellipratio = self.ellipseParams['a']/self.ellipseParams['b']
         ellipangle = math.degrees(self.ellipseParams['alpha'])
         pixelrdata, PSDarray = ctftools.ellipticalAverage(fftarray, ellipratio, ellipangle, 
                 self.params['ringwidth'], full=False)
         return self.removeBlackCenter(pixelrdata*self.freq, PSDarray)
	def drawPowerSpecImage(self, origpowerspec, maxsize=1200):

		origpowerspec = ctftools.trimPowerSpectraToOuterResolution(origpowerspec, self.plotlimit2DAngstrom, self.trimfreq)

		if self.debug is True:
			print "origpowerspec shape", origpowerspec.shape

		#compute elliptical average and merge with original image
		pixelrdata, rotdata = ctftools.ellipticalAverage(origpowerspec, self.ellipratio, self.angle,
			self.ringwidth*3, 1, full=True)
		ellipavgpowerspec = ctftools.unEllipticalAverage(pixelrdata, rotdata, 
			self.ellipratio, self.angle, origpowerspec.shape)
		halfshape = origpowerspec.shape[1]/2
		halfpowerspec = numpy.hstack( (origpowerspec[:,:halfshape] , ellipavgpowerspec[:,halfshape:] ) )
		if halfpowerspec.shape != origpowerspec.shape:
			apDisplay.printError("Error in power spectra creation")

		if max(halfpowerspec.shape) > maxsize:
			scale = maxsize/float(max(halfpowerspec.shape))
			#scale = math.sqrt((random.random()+random.random()+random.random())/3.0)
			apDisplay.printMsg( "Scaling final powerspec image by %.3f"%(scale))
			powerspec = imagefilter.scaleImage(halfpowerspec, scale)
		else:
			scale = 1280./float(max(halfpowerspec.shape))
			powerspec = imagefilter.scaleImage(halfpowerspec, scale)
			#scale = 1.0
			#powerspec = halfpowerspec.copy()

		self.scaleapix = self.trimapix
		self.scalefreq = self.trimfreq/scale
		if self.debug is True:
			print "orig pixel", self.apix
			print "trim pixel", self.trimapix
			print "scale pixel", self.scaleapix

		numzeros = 13

		radii1 = ctftools.getCtfExtrema(self.defocus1, self.scalefreq*1e10, 
			self.cs, self.volts, self.ampcontrast, numzeros=numzeros, zerotype="valley")
		radii2 = ctftools.getCtfExtrema(self.defocus2, self.scalefreq*1e10, 
			self.cs, self.volts, self.ampcontrast, numzeros=numzeros, zerotype="valley")

		#smallest of two defocii
		firstpeak = radii2[0]

		### 
		### PART 9: DRAW THE 2D POWERSPEC IMAGE
		### 
		center = numpy.array(powerspec.shape, dtype=numpy.float)/2.0
		foundzeros = min(len(radii1), len(radii2))
		"""
		pyplot.clf()
		ax = pyplot.subplot(1,1,1)
		pyplot.xticks([], [])
		pyplot.yticks([], [])
		pyplot.imshow(powerspec)
		pyplot.gray()
		for i in range(foundzeros):
			# because |def1| < |def2| ==> firstzero1 > firstzero2
			major = radii1[i]*2
			minor = radii2[i]*2
			ell = Ellipse(xy=center, width=major, height=minor, angle=self.angle+90, 
				fill=False, edgecolor="yellow", antialiased=True, linewidth=0.5)
			ax.add_artist(ell)
		pyplot.subplots_adjust(wspace=0, hspace=0, bottom=0, left=0, top=1, right=1, )
		self.newpowerspecfile = apDisplay.short(self.imgname)+"-powerspec-new.png"
		pyplot.savefig(self.newpowerspecfile, format="png", dpi=150, pad_inches=0.0)
		"""

		### 
		### PART 9: DRAW THE 2D POWERSPEC IMAGE
		### 
		apDisplay.printColor("PART 9: DRAW THE 2D POWERSPEC IMAGE", "magenta")

		center = numpy.array(powerspec.shape, dtype=numpy.float)/2.0
		originalimage = imagefile.arrayToImage(powerspec)
		originalimage = originalimage.convert("RGB")
		pilimage = originalimage.copy()
		draw = ImageDraw.Draw(pilimage)

		#########
		## draw astig axis line, if astig > 5%
		#########
		perdiff = 2*abs(self.defocus1-self.defocus2)/abs(self.defocus1+self.defocus2)
		if self.debug is True:
			print "Percent Difference %.1f"%(perdiff*100)
		if perdiff > 0.05:
			#print self.angle, radii2[0], center
			x = 1*firstpeak*math.cos(math.radians(self.angle))
			y = firstpeak*math.sin(math.radians(self.angle))
			#print x,y
			xy = (x+center[0], y+center[1], -x+center[0], -y+center[1])
			#print xy
			draw.line(xy, fill="#f23d3d", width=10)
		elif perdiff > 1e-6:
			#print self.angle, radii2[0], center
			x = 1*firstpeak*math.cos(math.radians(self.angle))
			y = firstpeak*math.sin(math.radians(self.angle))
			#print x,y
			xy = (x+center[0], y+center[1], -x+center[0], -y+center[1])
			#print xy
			draw.line(xy, fill="#f23d3d", width=2)

		#########
		## draw colored CTF Thon rings
		#########
		foundzeros = min(len(radii1), len(radii2))
		#color="#3d3dd2" #blue
		color="#ffd700" #gold
		for i in range(foundzeros):

			# because |def1| < |def2| ==> firstzero1 > firstzero2
			major = radii1[i]
			minor = radii2[i]
			if self.debug is True: 
				print "major=%.1f, minor=%.1f, angle=%.1f"%(major, minor, self.angle)
			if minor > powerspec.shape[0]/math.sqrt(3):
				# this limits how far we draw out the ellipses sqrt(3) to corner, just 2 inside line
				break
			width = int(math.ceil(math.sqrt(numzeros - i)))*2

			### determine color of circle
			currentres = 1.0/(major*self.scalefreq)
			if currentres > self.res80:
				ringcolor = "green"
			elif currentres > self.res50:
				ringcolor = "gold"
			else:
				ringcolor = "red"

			### determine number of points to use to draw ellipse, minimize distance btw points
			#isoceles triangle, b: radius ot CTF ring, a: distance btw points
			#a = 2 * b sin (theta/2)
			#a / 2b = sin(theta/2)
			#theta = 2 * asin (a/2b)
			#numpoints = 2 pi / theta
			## define a to be 5 pixels
			a = 40
			theta = 2.0 * math.asin (a/(2.0*major))
			skipfactor = 2
			numpoints = int(math.ceil(2.0*math.pi/theta/skipfactor))*skipfactor + 1
			#print "numpoints", numpoints


			points = ellipse.generate_ellipse(major, minor, 
				math.radians(self.angle), center, numpoints, None, "step", True)
			x = points[:,0]
			y = points[:,1]

			## wrap around to end
			x = numpy.hstack((x, [x[0],]))
			y = numpy.hstack((y, [y[0],]))
			## convert image

			numsteps = int(math.floor((len(x)-2)/skipfactor))
			for j in range(numsteps):
				k = j*skipfactor
				xy = (x[k], y[k], x[k+1], y[k+1])
				draw.line(xy, fill=ringcolor, width=width)

		#########
		## draw blue resolution ring
		#########
		# 1/res = freq * pixrad => pixrad = 1/(res*freq)
		maxrad = (max(powerspec.shape)-1)/2.0 - 3
		maxres = 1.0/(self.scalefreq*maxrad)
		bestres = math.ceil(maxres)
		pixrad = 1.0/(self.scalefreq*bestres)
		if self.debug is True:
			print "bestres %d Angstroms (max: %.3f)"%(bestres, maxres)
			print "pixrad %d (max: %.3f)"%(pixrad, maxrad)
		if pixrad > maxrad:
			apDisplay.printError("Too big of outer radius to draw")
		outpixrad = math.ceil(pixrad)+1
		inpixrad = math.floor(pixrad)-1
		for i in numpy.arange(-4.0,4.01,0.01):
			r = pixrad + i
			blackxy = numpy.array((center[0]-r,center[1]-r, 
				center[0]+r,center[1]+r), dtype=numpy.float64)
			draw.ellipse(tuple(blackxy), outline="black")
		for i in numpy.arange(-1.50,1.51,0.01):
			r = pixrad + i
			whitexy = numpy.array((center[0]-r,center[1]-r, 
				center[0]+r,center[1]+r), dtype=numpy.float64)
			draw.ellipse(tuple(whitexy), outline="#0BB5FF")

		#########
		## setup font to add text
		#########
		fontpath = "/usr/share/fonts/liberation/LiberationSans-Regular.ttf"
		from PIL import ImageFont
		if os.path.isfile(fontpath):
			fontsize = int(math.ceil( 48/2. * min(powerspec.shape)/float(maxsize))*2)
			font = ImageFont.truetype(fontpath, fontsize)
		else:
			font = ImageFont.load_default()

		#########
		## add resolution ring text
		#########
		angrad = maxrad/math.sqrt(2) + 1
		coord = (angrad+maxrad, angrad+maxrad)
		for i in [-2,2]:
			for j in [-2,2]:
				draw.text((coord[0]+i,coord[1]+j), "%.1f A"%(bestres), font=font, fill="black")
		draw.text(coord, "%.1f A"%(bestres), font=font, fill="#0BB5FF")

		#########
		## add defocus value text
		#########
		meandef = abs(self.defocus1+self.defocus2)/2.0
		deftext = "%.2f um"%(meandef*1e6)
		tsize = draw.textsize(deftext, font=font)
		coord = (powerspec.shape[0]-4-tsize[0], powerspec.shape[0]-4-tsize[1])
		for i in [-2,2]:
			for j in [-2,2]:
				draw.text((coord[0]+i,coord[1]+j), deftext, font=font, fill="black")
		draw.text(coord, deftext, font=font, fill="#AB82FF")

		#########
		## add text about what sides of powerspec are:
		## left - raw data; right - elliptical average data
		#########
		leftcoord = (4, 4)
		for i in [-3, -1, 0, 1, 3]:
			for j in [-3, -1, 0, 1, 3]:
				draw.text((leftcoord[0]+i,leftcoord[1]+j) , "Raw CTF Data", font=font, fill="black")
		draw.text(leftcoord, "Raw CTF Data", font=font, fill="#00BFFF")

		tsize = draw.textsize("Elliptical Average", font=font)
		xdist = powerspec.shape[0] - 4 - tsize[0]
		rightcoord = (xdist, 4)
		for i in [-2,2]:
			for j in [-2,2]:
				draw.text((rightcoord[0]+i,rightcoord[1]+j), "Elliptical Average", font=font, fill="black")
		draw.text(rightcoord, "Elliptical Average", font=font, fill="#00BFFF")

		#########
		## create an alpha blend effect
		#########
		originalimage = Image.blend(originalimage, pilimage, 0.95)
		apDisplay.printMsg("Saving 2D powerspectra to file: %s"%(self.powerspecfile))
		#pilimage.save(self.powerspecfile, "JPEG", quality=85)
		originalimage.save(self.powerspecfile, "JPEG", quality=85)
		if not os.path.isfile(self.powerspecfile):
			apDisplay.printWarning("power spec file not created")
		if self.debug is True:
			#powerspecjpg = Image.open(self.powerspecfile)
			#powerspecjpg.show()
			pass
		return
	def normalizeCtf(self, zdata2d, twod=True):
		"""
		inner cut radius - radius for number of pixels to clip in the center of image
		"""
		### 
		### PART 1: SETUP PARAMETERS AND ELLIPTICAL AVERAGE
		###
		apDisplay.printColor("PART 1: SETUP PARAMETERS AND ELLIPTICAL AVERAGE", "magenta")

		meandefocus = math.sqrt(self.defocus1*self.defocus2)
		if meandefocus < 0.6e-6:
			self.ringwidth = 3.0
		elif meandefocus < 1.0e-6:
			self.ringwidth = 2.0
		elif meandefocus > 5.0e-6:
			self.ringwidth = 0.5

		### get all peak (not valley)
		peak = ctftools.getCtfExtrema(meandefocus, self.trimfreq*1e10, self.cs, self.volts, 
			self.ampcontrast, numzeros=250, zerotype="peak")
		apDisplay.printMsg("Number of available peaks is %d"%(len(peak)))
		if len(peak) < 6:
			apDisplay.printWarning("Too few peaks to work with, probably bad defocus estimate")
			return None
		firstpeak = peak[0]
		peakradii = numpy.array(peak, dtype=numpy.float64)*self.trimfreq
		### get all valley (not peak)
		valley = ctftools.getCtfExtrema(meandefocus, self.trimfreq*1e10, self.cs, self.volts, 
			self.ampcontrast, numzeros=250, zerotype="valley")
		firstvalley = valley[0]
		valleyradii = numpy.array(valley, dtype=numpy.float64)*self.trimfreq

		### do the elliptical average
		if self.ellipratio is None:
			return None
		pixelrdata, rotdata = ctftools.ellipticalAverage(zdata2d, self.ellipratio, self.angle,
			self.ringwidth, firstpeak, full=False)
		raddata = pixelrdata*self.trimfreq

		if self.debug is True:
			print "Elliptical CTF limits %.1f A -->> %.1fA"%(1./raddata.min(), 1./raddata.max())

		apDisplay.printMsg("Determine and subtract noise model")
		CtfNoise = ctfnoise.CtfNoise()

		### 
		### PART 2: BACKGROUND NOISE SUBTRACTION
		### 
		apDisplay.printColor("PART 2: BACKGROUND NOISE SUBTRACTION", "magenta")

		### split the function up in first 3/5 and last 3/5 of data with 1/5 overlap
		firstvalleyindex = numpy.searchsorted(raddata, self.trimfreq*firstvalley)
		numpoints = len(raddata) - firstvalleyindex
		# require at least 10 points past first peak of CTF to perform estimation
		if numpoints < 10:
			apDisplay.printWarning("Not enough points past first peak (n=%d < 10) to do background subtraction"
				%(numpoints))
			return None
		npart1start = firstvalleyindex
		npart1end = int(firstvalleyindex + numpoints*6/10.)
		npart2start = int(firstvalleyindex + numpoints*5/10.)
		npart2end = int(firstvalleyindex + numpoints*9/10.)
		npart3start = int(firstvalleyindex + numpoints*8/10.)
		npart3end = len(raddata)
		
		svalleydata = ctfnoise.peakExtender(raddata, rotdata, valleyradii, "below")

		### fit function below log(CTF), i.e., noise model	
		## first part data
		noisefitparams1 = CtfNoise.modelCTFNoise(raddata[npart1start:npart1end],
			svalleydata[npart1start:npart1end], "below")
		noisedata1 = CtfNoise.noiseModel(noisefitparams1, raddata)

		## second part data
		noisefitparams2 = CtfNoise.modelCTFNoise(raddata[npart2start:npart2end],
			rotdata[npart2start:npart2end], "below")
		noisedata2 = CtfNoise.noiseModel(noisefitparams2, raddata)

		## third part data
		#noisefitparams3 = CtfNoise.modelCTFNoise(raddata[npart3start:npart3end],
		#	svalleydata[npart3start:npart3end], "below")
		noisefitparams3 = CtfNoise.modelCTFNoise(raddata[npart3start:npart3end],
			rotdata[npart3start:npart3end], "below")
		noisedata3 = CtfNoise.noiseModel(noisefitparams3, raddata)

		## debug only
		if self.debug is True:
			singlenoisefitparams = CtfNoise.modelCTFNoise(raddata[npart1start:npart3end],
				svalleydata[npart1start:npart3end], "below")
			singlenoisedata = CtfNoise.noiseModel(singlenoisefitparams, raddata)

		## merge data
		scale = numpy.arange(npart1end-npart2start, dtype=numpy.float32)
		scale /= scale.max()
		overlapdata1 = noisedata1[npart2start:npart1end]*(1-scale) + noisedata2[npart2start:npart1end]*scale
		scale = numpy.arange(npart2end-npart3start, dtype=numpy.float32)
		scale /= scale.max()
		overlapdata2 = noisedata2[npart3start:npart2end]*(1-scale) + noisedata3[npart3start:npart2end]*scale

		mergedata = numpy.hstack((noisedata1[:npart2start], overlapdata1,
			noisedata2[npart1end:npart3start], overlapdata2,
			noisedata3[npart2end:]))

		noisedata = mergedata

		### DO THE SUBTRACTION
		normexprotdata = numpy.exp(rotdata) - numpy.exp(noisedata)

		### CUT OUT ANY NEGATIVE VALUES FOR DISPLAY AND FITTING PURPOSES ONLY
		minval = -1
		mindata = ndimage.maximum_filter(normexprotdata, 2)
		count = 0
		while minval < 3 and count < 10:
			count += 1
			mindata = ndimage.maximum_filter(mindata, 2)
			minval = mindata.min()
			if self.debug is True:
				apDisplay.printMsg("Minimum value for normalization: %.3f"%(minval))
		if minval < 3:
			minval = 3
		normlogrotdata = numpy.log(numpy.where(normexprotdata<minval, minval, normexprotdata))
		if numpy.isnan(normlogrotdata).any() is True:
			apDisplay.printError("Error in log normalization of CTF data")

		### 
		### PART 3: ENVELOPE NORMALIZATION
		### 
		apDisplay.printColor("PART 3: ENVELOPE NORMALIZATION", "magenta")

		### split the function up in first 3/5 and last 3/5 of data with 1/5 overlap
		firstpeakindex = numpy.searchsorted(raddata, firstpeak*self.trimfreq)
		numpoints = len(raddata) - firstpeakindex
		epart1start = firstpeakindex
		epart1end = int(firstpeakindex + numpoints*6/10.)
		epart2start = int(firstpeakindex + numpoints*5/10.)
		epart2end = int(firstpeakindex + numpoints*9/10.)
		epart3start = int(firstpeakindex + numpoints*8/10.)
		epart3end = len(raddata)

		peakdata = ctfnoise.peakExtender(raddata, normlogrotdata, peakradii, "above")

		## first part data
		envelopfitparams1 = CtfNoise.modelCTFNoise(raddata[epart1start:epart1end],
			peakdata[epart1start:epart1end], "above")
		envelopdata1 = CtfNoise.noiseModel(envelopfitparams1, raddata)

		## second part data
		envelopfitparams2 = CtfNoise.modelCTFNoise(raddata[epart2start:epart2end],
			peakdata[epart2start:epart2end], "above")
		envelopdata2 = CtfNoise.noiseModel(envelopfitparams2, raddata)

		## third part data
		envelopfitparams3 = CtfNoise.modelCTFNoise(raddata[epart3start:epart3end],
			peakdata[epart3start:epart3end], "above")
		envelopdata3 = CtfNoise.noiseModel(envelopfitparams3, raddata)

		## merge data
		scale = numpy.arange(epart1end-epart2start, dtype=numpy.float32)
		scale /= scale.max()
		overlapdata1 = envelopdata1[epart2start:epart1end]*(1-scale) + envelopdata2[epart2start:epart1end]*scale
		scale = numpy.arange(epart2end-epart3start, dtype=numpy.float32)
		scale /= scale.max()
		overlapdata2 = envelopdata2[epart3start:epart2end]*(1-scale) + envelopdata3[epart3start:epart2end]*scale

		mergedata = numpy.hstack((envelopdata1[:epart2start], overlapdata1,
			envelopdata2[epart1end:epart3start], overlapdata2,
			envelopdata3[epart2end:]))
		envelopdata = mergedata

		normnormexprotdata = normexprotdata / numpy.exp(envelopdata)

		### 
		### PART 4: PEAK EXTENSION
		### 
		apDisplay.printColor("PART 4: PEAK EXTENSION", "magenta")

		### Subtract fit valley locations
		valleydata = ctfnoise.peakExtender(raddata, normnormexprotdata, valleyradii, "below")
		valleydata = ndimage.gaussian_filter1d(valleydata, 1)
		normvalleydata = normnormexprotdata - valleydata

		### Normalize fit peak locations
		peakdata = ctfnoise.peakExtender(raddata, normvalleydata, peakradii, "above")
		peakdata = ndimage.gaussian_filter1d(peakdata, 1)
		normpeakdata = normvalleydata / peakdata

		### 
		### PART 5: CTF FIT AND CONFIDENCE
		### 
		apDisplay.printColor("PART 5: CTF FIT AND CONFIDENCE", "magenta")

		### everything in mks units, because rdata is 1/A multiply be 1e10 to get 1/m
		ctffitdata = genctf.generateCTF1d(raddata*1e10, focus=meandefocus, cs=self.cs,
			volts=self.volts, ampconst=self.ampcontrast, failParams=False)
		#ctffitdata2 = genctf.generateCTF1dACE2(raddata*1e10, focus=meandefocus, cs=self.cs,
		#	volts=self.volts, ampconst=self.ampcontrast, failParams=False)
		overctffitdata = genctf.generateCTF1d(raddata*1e10, focus=meandefocus, cs=self.cs,
			volts=self.volts, ampconst=self.ampcontrast, failParams=False, overfocus=True)

		ind30 = numpy.searchsorted(raddata, 1/30.)
		ind10 = numpy.searchsorted(raddata, 1/10.)
		self.conf3010 = scipy.stats.pearsonr(normpeakdata[ind30:ind10], ctffitdata[ind30:ind10])[0]
		self.overconf3010 = scipy.stats.pearsonr(normpeakdata[ind30:ind10], overctffitdata[ind30:ind10])[0]
		apDisplay.printColor("1/30A - 1/10A confidence is %.3f (overfocus %.3f)"%(self.conf3010, self.overconf3010), "green")
		if self.overconf3010 > self.conf3010*1.1:
			apDisplay.printWarning("Image is possibly over-focused")

		ind5peak1 = numpy.searchsorted(raddata, peakradii[0])
		ind5peak2 = numpy.searchsorted(raddata, peakradii[5])
		self.conf5peak = scipy.stats.pearsonr(normpeakdata[ind5peak1:ind5peak2], ctffitdata[ind5peak1:ind5peak2])[0]
		self.overconf5peak = scipy.stats.pearsonr(normpeakdata[ind5peak1:ind5peak2], overctffitdata[ind5peak1:ind5peak2])[0]
		apDisplay.printColor("5 peak confidence is %.3f (overfocus %.3f)"%(self.conf5peak, self.overconf5peak), "green")
		if self.overconf5peak > self.conf5peak*1.1:
			apDisplay.printWarning("Image is possibly over-focused")

		### 
		### PART 6: CTF RESOLUTION LIMITS
		### 
		apDisplay.printColor("PART 6: CTF RESOLUTION LIMITS", "magenta")

		confraddata, confdata = ctfres.getCorrelationProfile(raddata, 
			normpeakdata, ctffitdata, peak, self.trimfreq)
		overconfraddata, overconfdata = ctfres.getCorrelationProfile(raddata, 
			normpeakdata, overctffitdata, peak, self.trimfreq)

		self.res80 = ctfres.getResolutionFromConf(confraddata, confdata, limit=0.8)
		if self.res80 is None:
			self.res80 = 100.0
		self.overres80 = ctfres.getResolutionFromConf(overconfraddata, overconfdata, limit=0.8)
		if self.overres80 is None:
			self.overres80 = 100.0
		self.res50 = ctfres.getResolutionFromConf(confraddata, confdata, limit=0.5)
		if self.res50 is None:
			self.res50 = 100.0
			res50max = min(raddata.max(), 1/10.)
		elif self.res50 > 15.0:
			res50max = min(raddata.max(), 1/10.)
		else:
			res50max = min(raddata.max(), 1.5/self.res50)
		self.overres50 = ctfres.getResolutionFromConf(overconfraddata, overconfdata, limit=0.5)
		if self.overres50 is None:
			self.overres50 = 100.0


		apDisplay.printColor("Resolution limit is %.2f at 0.8 and %.2f at 0.5"
			%(self.res80, self.res50), "green")

		### 
		### PART 7: MAKE 1D PLOT SUMMARY FIGURE
		### 
		apDisplay.printColor("PART 7: MAKE 1D PLOT SUMMARY FIGURE", "magenta")

		titlefontsize=8
		axisfontsize=7
		raddatasq = raddata**2
		confraddatasq = confraddata**2
		valleyradiisq = valleyradii**2
		peakradiisq = peakradii**2
		fpi = firstpeakindex

		pyplot.clf()

		if 'subplot2grid' in dir(pyplot):
			pyplot.subplot2grid((3,2), (0,0))
		else:
			pyplot.subplot(2,2,1) # 2 rows, 2 columns, plot 1
		pyplot.title("Background Noise Subtraction", fontsize=titlefontsize)
		pyplot.ylabel("Log(PSD)", fontsize=axisfontsize)
		pyplot.plot(raddata[fpi:], rotdata[fpi:], 
			'-', color="blue", alpha=0.5, linewidth=0.5)
		pyplot.plot(raddata[fpi:], rotdata[fpi:], 
			'.', color="blue", alpha=0.75, markersize=2.0)
		pyplot.plot(raddata[npart1start:npart1end], noisedata1[npart1start:npart1end],
			'-', color="magenta", alpha=0.5, linewidth=2)
		pyplot.plot(raddata[npart2start:npart2end], noisedata2[npart2start:npart2end],
			'-', color="red", alpha=0.5, linewidth=2)
		pyplot.plot(raddata[npart3start:npart3end], noisedata3[npart3start:npart3end], 
			'-', color="orange", alpha=0.5, linewidth=2)
		pyplot.plot(raddata[fpi:], noisedata[fpi:], 
			'--', color="purple", alpha=1.0, linewidth=1)
		self.setPyPlotXLabels(raddata, valleyradii=valleyradii, maxloc=res50max)
		pyplot.ylim(ymin=noisedata.min())

		if 'subplot2grid' in dir(pyplot):
			pyplot.subplot2grid((3,2), (0,1))
		else:
			pyplot.subplot(2,2,2) # 2 rows, 2 columns, plot 2
		pyplot.title("Envelope Normalization", fontsize=titlefontsize)
		pyplot.ylabel("Log(PSD-Noise)", fontsize=axisfontsize)
		pyplot.plot(raddata[fpi:], normlogrotdata[fpi:],
			'-', color="blue", alpha=0.5, linewidth=0.5)
		pyplot.plot(raddata[fpi:], normlogrotdata[fpi:],
			'.', color="blue", alpha=0.75, markersize=2.0)
		pyplot.plot(raddata[epart1start:epart1end], envelopdata1[epart1start:epart1end],
			'-', color="magenta", alpha=0.5, linewidth=2)
		pyplot.plot(raddata[epart2start:epart2end], envelopdata2[epart2start:epart2end],
			'-', color="red", alpha=0.5, linewidth=2)
		pyplot.plot(raddata[epart3start:epart3end], envelopdata3[epart3start:epart3end],
			'-', color="orange", alpha=0.5, linewidth=2)
		pyplot.plot(raddata[fpi:], envelopdata[fpi:],
			'--', color="purple", alpha=1.0, linewidth=1)
		self.setPyPlotXLabels(raddata, peakradii=peakradii, maxloc=res50max)
		pyplot.ylim(ymax=envelopdata.max())

		if 'subplot2grid' in dir(pyplot):
			pyplot.subplot2grid((3,2), (1,0), colspan=2)
		else:
			pyplot.subplot(2,2,3) # 2 rows, 2 columns, plot 3
		pyplot.title("Fit of CTF data (30-10A %.3f / 5-peak %.3f) Def1= %.3e / Def2= %.3e"
			%(self.conf3010, self.conf5peak, self.defocus1, self.defocus2), fontsize=titlefontsize)
		pyplot.ylabel("Norm PSD", fontsize=titlefontsize)
		pyplot.plot(raddatasq[fpi:], ctffitdata[fpi:],
			'-', color="black", alpha=0.5, linewidth=1)
		#pyplot.plot(raddatasq[fpi:], overctffitdata[fpi:],
		#	'-', color="red", alpha=0.75, linewidth=1)
		pyplot.plot(raddatasq[fpi:], normpeakdata[fpi:],
			'-', color="blue", alpha=0.5, linewidth=0.5)
		pyplot.plot(raddatasq[fpi:], normpeakdata[fpi:],
			'.', color="blue", alpha=0.75, markersize=2.0)
		self.setPyPlotXLabels(raddatasq, maxloc=1.0/self.outerAngstrom1D**2, square=True)
		pyplot.grid(True, linestyle=':', )
		pyplot.ylim(-0.05, 1.05)

		"""
		pyplot.subplot2grid((3,2), (1,1))
		tenangindex = numpy.searchsorted(raddata, 1/10.)-1
		pyplot.title("Defocus1= %.3e / Defocus2= %.3e"
			%(self.defocus1, self.defocus2), fontsize=titlefontsize)
		pyplot.ylabel("Norm PSD", fontsize=titlefontsize)
		pyplot.plot(raddatasq[tenangindex:], ctffitdata[tenangindex:],
			'-', color="black", alpha=0.5, linewidth=1)
		pyplot.plot(raddatasq[tenangindex:], normpeakdata[tenangindex:],
			'-', color="blue", alpha=0.5, linewidth=0.5)
		pyplot.plot(raddatasq[tenangindex:], normpeakdata[tenangindex:],
			'.', color="blue", alpha=0.75, markersize=2.0)
		self.setPyPlotXLabels(raddatasq[tenangindex:], maxloc=1/7.**2, square=True)
		pyplot.grid(True, linestyle=':', )
		pyplot.ylim(-0.05, 1.05)
		"""

		if 'subplot2grid' in dir(pyplot):
			pyplot.subplot2grid((3,2), (2,0), colspan=2)
		else:
			pyplot.subplot(2,2,4) # 2 rows, 2 columns, plot 4
		pyplot.title("Resolution limits: %.2fA at 0.8 and %.2fA at 0.5"
			%(self.res80, self.res50), fontsize=titlefontsize)
		pyplot.ylabel("Correlation", fontsize=titlefontsize)
		pyplot.plot(raddata[fpi:], ctffitdata[fpi:],
			'-', color="black", alpha=0.2, linewidth=1)
		pyplot.plot(raddata[fpi:], normpeakdata[fpi:],
			'-', color="blue", alpha=0.2, linewidth=1)
		#pyplot.plot(raddata[fpi:], normpeakdata[fpi:],
		#	'.', color="black", alpha=0.25, markersize=1.0)
		pyplot.axvline(x=1.0/self.res80, linewidth=2, color="gold", alpha=0.95, ymin=0, ymax=0.8)
		pyplot.axvline(x=1.0/self.res50, linewidth=2, color="red", alpha=0.95, ymin=0, ymax=0.5)
		res80index = numpy.searchsorted(confraddata, 1.0/self.res80)
		pyplot.plot(confraddata[:res80index+1], confdata[:res80index+1],
			'-', color="green", alpha=1, linewidth=2)
		res50index = numpy.searchsorted(confraddata, 1.0/self.res50)
		pyplot.plot(confraddata[res80index-1:res50index+1], confdata[res80index-1:res50index+1],
			'-', color="orange", alpha=1, linewidth=2)
		pyplot.plot(confraddata[res50index-1:], confdata[res50index-1:],
			'-', color="red", alpha=1, linewidth=2)
		self.setPyPlotXLabels(raddata, maxloc=res50max)
		pyplot.grid(True, linestyle=':', )
		if self.res80 < 99:
			pyplot.ylim(-0.05, 1.05)
		elif self.res50 < 99:
			pyplot.ylim(-0.25, 1.05)
		else:
			pyplot.ylim(-0.55, 1.05)


		pyplot.subplots_adjust(wspace=0.22, hspace=0.50, 
			bottom=0.08, left=0.07, top=0.95, right=0.965, )
		self.plotsfile = apDisplay.short(self.imgname)+"-plots.png"
		apDisplay.printMsg("Saving 1D graph to file %s"%(self.plotsfile))
		pyplot.savefig(self.plotsfile, format="png", dpi=300, orientation='landscape', pad_inches=0.0)


		if self.debug is True:
			### write a 1d profile dat files

			f = open(apDisplay.short(self.imgname)+"-noise_fit.dat", "w")
			for i in range(npart1start, npart3end):
				f.write("%.16f\t%.16f\t%.16f\t%.16f\n"%(raddata[i], rotdata[i], singlenoisedata[i], noisedata[i]))
			f.write("&\n")
			for i in range(npart1start, npart1end):
				f.write("%.16f\t%.16f\n"%(raddata[i], noisedata1[i]))
			f.write("&\n")
			for i in range(npart2start, npart2end):
				f.write("%.16f\t%.16f\n"%(raddata[i], noisedata2[i]))
			f.write("&\n")
			for i in range(npart3start, npart3end):
				f.write("%.16f\t%.16f\n"%(raddata[i], noisedata3[i]))
			f.write("&\n")
			f.close()

			#smallrotdata = numpy.where(rotdata-singlenoisedata>0.19, 0.19, rotdata-singlenoisedata)
			noiseexp = numpy.exp(singlenoisedata)
			smallrotdata = numpy.exp(rotdata) - noiseexp
			minval = 3

			smallrotdata = numpy.log(numpy.where(smallrotdata<minval, minval, smallrotdata))
			smallnoise = numpy.exp(noisedata) - noiseexp
			smallnoise = numpy.log(numpy.where(smallnoise<minval, minval, smallnoise))
			smallnoise1 = numpy.exp(noisedata1) - noiseexp
			smallnoise1 = numpy.log(numpy.where(smallnoise1<minval, minval, smallnoise1))
			smallnoise2 = numpy.exp(noisedata2) - noiseexp
			smallnoise2 = numpy.log(numpy.where(smallnoise2<minval, minval, smallnoise2))
			smallnoise3 = numpy.exp(noisedata3) - noiseexp
			smallnoise3 = numpy.log(numpy.where(smallnoise3<minval, minval, smallnoise3))
			f = open(apDisplay.short(self.imgname)+"-noisesubt_fit.dat", "w")
			for i in range(len(ctffitdata)):
				f.write("%.16f\t%.16f\n"%(raddata[i], smallrotdata[i]))
			f.write("&\n")
			for i in range(npart1start, npart3end):
				f.write("%.16f\t%.16f\t%.16f\t%.16f\n"%(raddata[i], smallrotdata[i], smallnoise[i], 0))
			f.write("&\n")
			for i in range(npart1start, npart1end):
				f.write("%.16f\t%.16f\n"%(raddata[i], smallnoise1[i]))
			f.write("&\n")
			for i in range(npart2start, npart2end):
				f.write("%.16f\t%.16f\n"%(raddata[i], smallnoise2[i]))
			f.write("&\n")
			for i in range(npart3start, npart3end):
				f.write("%.16f\t%.16f\n"%(raddata[i], smallnoise3[i]))
			f.write("&\n")
			f.close()

			f = open(apDisplay.short(self.imgname)+"-ctf_fit.dat", "w")
			for i in range(len(ctffitdata)):
				f.write("%.16f\t%.16f\t%.16f\n"%(raddata[i], normpeakdata[i], ctffitdata[i]))
			f.close()
			#sys.exit(1)

		if self.debug is True:
			print "Showing results"
			#pyplot.show()
			#plotspng = Image.open(self.plotsfile)
			#plotspng.show()
		pyplot.clf()

		if twod is False:
			return zdata2d

		### 
		### PART 8: NORMALIZE THE 2D IMAGE
		### 
		apDisplay.printColor("PART 8: NORMALIZE THE 2D IMAGE", "magenta")

		### Convert 1D array into 2D array by un-elliptical average
		noise2d = ctftools.unEllipticalAverage(pixelrdata, noisedata,
			self.ellipratio, self.angle, zdata2d.shape)
		envelop2d = ctftools.unEllipticalAverage(pixelrdata, envelopdata,
			self.ellipratio, self.angle, zdata2d.shape)
		valley2d = ctftools.unEllipticalAverage(pixelrdata, valleydata,
			self.ellipratio, self.angle, zdata2d.shape)
		peak2d = ctftools.unEllipticalAverage(pixelrdata, peakdata,
			self.ellipratio, self.angle, zdata2d.shape)

		### Do the normalization on the 2d data
		#blur2d = ndimage.gaussian_filter(zdata2d, 2)
		normal2d = numpy.exp(zdata2d) - numpy.exp(noise2d)
		normal2d = normal2d / numpy.exp(envelop2d)
		normal2d = normal2d - valley2d
		normal2d = normal2d / peak2d
		normal2d = numpy.where(normal2d < -0.2, -0.2, normal2d)
		normal2d = numpy.where(normal2d > 1.2, 1.2, normal2d)

		return normal2d