def home():
    session["search_query"] = ""
    search_form = SearchForm()
    if request.method == "POST":
        if search_form.search.data:
            return redirect((url_for("main.search_results",
                                     search_term=search_form.search.data)))
    return render_template("home.html", search_form=search_form)
Exemple #2
0
def before_request():
    if current_user.is_authenticated:
        current_user.last_seen = datetime.utcnow()
        ''' no need for db.session.add() b/c current_user invokes the user loader
        callback function'''
        db.session.commit()
        g.search_form = SearchForm()
    g.locale = str(get_locale())
Exemple #3
0
def before_request():
    if current_user.is_authenticated:
        current_user.last_seen = datetime.utcnow()

        # user_loader in models puts target user into db session
        db.session.commit()

        # g = container for data persisting through life of each client request
        g.search_form = SearchForm()

    # adds language code to base template through flask_babel's get_locale()
    g.locale = str(get_locale())
def search_results(search_term):

    session["search_query"] = search_term
    like_form = EmptyForm()
    search_form = SearchForm()

    # exact match? Suggest alternatives!
    if sq.exact_recipe_match(search_term):
        return redirect(
            url_for("main.compare_recipes", search_term=search_term))
    # fuzzy search
    results = sq.search_recipes(search_term)

    if len(results) > 0:

        # Retrieve or predict user ratings
        # TODO: Currently user_ratings isn't used at all
        # - put in helper fun, used in compare_recipes and search_results
        if current_user.is_authenticated:
            urls = list(results["url"].values)

            # Include user ratings in results
            user_results = sq.query_user_ratings(current_user.userID, urls)
            results = results.merge(user_results[["user_rating", "recipesID"]],
                                    how="left",
                                    on="recipesID")
            results["user_rating"].fillna(3, inplace=True)

            # Include bookmarks in results
            df_bookmarks = sq.query_bookmarks(current_user.userID, urls)
            results = results.merge(df_bookmarks, how="left", on="recipesID")
            results["bookmarked"].fillna(False, inplace=True)

        # ratings and emissions need to be passed separately for JS
        ratings = list(results["perc_rating"].values)
        emissions = [v for v in results["perc_sustainability"].values]

        return render_template(
            "explore.html",
            search_form=search_form,
            like_form=like_form,
            results=results,
            ratings=ratings,
            emissions=emissions,
        )
def profile():

    # flask forms
    search_form = SearchForm()
    delete_account_form = DeleteAccountForm()
    newsletter_form = NewsletterForm()
    verify_email_form = VerifyEmailRequestForm()

    # verifying email address
    if (verify_email_form.submit_verify_email.data
            and verify_email_form.validate_on_submit()):
        send_verification_email(current_user)
        flash("A verification link has been sent to your email address.")
        return redirect(url_for("main.profile"))

    # subscribing / unsubscribing
    if newsletter_form.submit_newsletter.data and newsletter_form.validate_on_submit(
    ):
        sq.change_newsletter_subscription(current_user.userID)
        if current_user.optin_news:
            flash("Successfully subscribed to email newsletter.")
        else:
            flash("Successfully unsubscribed from email newsletter.")
        redirect(url_for("main.profile"))

    # delete account
    if (delete_account_form.submit_delete_account.data
            and delete_account_form.validate_on_submit()):
        if delete_account_form.username.data == current_user.username:
            sq.delete_account(current_user.userID)
            flash("Your account has been deleted successfully.")
            redirect(url_for("main.home"))
        else:
            flash("You need to confirm account deletion by entering \
                  your username.")
            redirect(url_for("main.profile"))

    return render_template(
        "profile.html",
        search_form=search_form,
        newsletter_form=newsletter_form,
        delete_account_form=delete_account_form,
        verify_email_form=verify_email_form,
    )
def compare_recipes(search_term, Np=20):

    # No exact match found
    if sq.exact_recipe_match(search_term) is False:
        return redirect(url_for("main.search_results",
                                search_term=search_term))

    # Forms
    search_form = SearchForm()
    like_form = EmptyForm()

    # Sorting results
    sort_by = request.args.get("sort_by")
    if not sort_by:
        sort_by = "Similarity"

    # Pagination
    page = request.args.get("page")
    page = int(page) if page else 0

    # Get top 199 most similar recipes
    results = sq.content_based_search(search_term)

    # Retrieve bookmarks and likes
    if current_user.is_authenticated:
        urls = list(results["url"].values)

        # Include user ratings in results
        user_results = sq.query_user_ratings(current_user.userID, urls)
        results = results.merge(user_results[["user_rating", "recipesID"]],
                                how="left",
                                on="recipesID")
        results["user_rating"].fillna(3, inplace=True)

        # Include bookmarks in results
        df_bookmarks = sq.query_bookmarks(current_user.userID, urls)
        results = results.merge(df_bookmarks, how="left", on="recipesID")
        results["bookmarked"].fillna(False, inplace=True)

    # Disentangle reference recipe and similar recipes
    ref_recipe = results.iloc[0]
    results = results.iloc[1::, :]

    # Select only the top Np recipes for one page
    results = results[(0 + page * Np):((page + 1) * Np)]

    # Sort by similarity, sustainability or rating
    results = hf.sort_search_results(results, sort_by)

    # Pass ratings & emissions jointly for ref recipe and results
    ratings = list(results["perc_rating"].values)
    ratings = [ref_recipe["perc_rating"]] + ratings
    emissions = [v for v in results["perc_sustainability"].values]
    emissions = [ref_recipe["perc_sustainability"]] + emissions
    similarity = [round(v * 100) for v in results["similarity"].values]

    # make figures
    bp = ap.bar_compare_emissions(ref_recipe, results, sort_by=sort_by)

    return render_template(
        "compare_recipes.html",
        reference_recipe=ref_recipe,
        results=results,
        ratings=ratings,
        emissions=emissions,
        similarity=similarity,
        like_form=like_form,
        search_form=search_form,
        search_term=search_term,
        page=page,
        bp=bp,
    )
def blog():
    search_form = SearchForm()
    return render_template("blog.html", search_form=search_form)
def about():
    search_form = SearchForm()
    return render_template("about.html", search_form=search_form)
def cookbook(Np=20):

    # navbar-search
    search_form = SearchForm()

    # Like/Unlike form and bookmark form
    like_form = EmptyForm()
    bookmark_form = EmptyForm()

    # Pagination
    page = request.args.get("page")
    page = int(page) if page else 0

    # TODO cookbook search

    # Get bookmarked recipes
    cookbook = sq.query_cookbook(current_user.userID)

    # Descriptive statistics to show to user
    Nrecipes = cookbook.shape[0]
    Nliked = sum(cookbook["user_rating"] == 5)
    Ndisliked = sum(cookbook["user_rating"] == 1)
    fav_recipes = hf.get_favorite_recipes(cookbook, 3)
    fav_categ, fav_categ_cnt = hf.get_favorite_categories(cookbook, 7)
    mean_cookbook_emissions = round(
        sum(cookbook["emissions"]) / (cookbook.shape[0] + 0.00001), 2)
    recommendations = [""]  # TODO write helper func

    # Prepare figure data
    df_hist = sq.query_all_recipe_emissions()
    df_hist["reference"] = df_hist.url.isin(cookbook["url"])
    df_hist.rename(
        columns={
            "emissions_log10": "log10(Emissions)",
            "emissions": "Emissions",
            "title": "Title",
        },
        inplace=True,
    )

    # Sort by similarity, sustainability or rating
    sort_by = request.args.get("sort_by")
    if not sort_by:
        sort_by = "Sustainability"
    cookbook = hf.sort_search_results(cookbook, sort_by)
    Npages = cookbook.shape[0] // Np + 1

    # Select only the top Np recipes for one page
    cookbook = cookbook[(0 + page * Np):((page + 1) * Np)]

    # TODO create separate route for personalized recommendations, see
    # https://github.com/sbuergers/sustainable-recipe-recommender-website/issues/3#issuecomment-717503064
    # user_ratings = hf.predict_user_ratings(cookbook)

    # Variables to sort by
    avg_ratings = list(cookbook["perc_rating"].values)
    emissions = [v for v in cookbook["perc_sustainability"].values]

    # Make figures
    hist_title = "Emissions distribution of cookbook recipes"
    hist_emissions = ap.histogram_emissions(df_hist, hist_title)

    return render_template(
        "cookbook.html",
        search_form=search_form,
        cookbook=cookbook,
        Nrecipes=Nrecipes,
        Nliked=Nliked,
        Ndisliked=Ndisliked,
        fav_recipes=fav_recipes,
        fav_categ=fav_categ,
        fav_categ_cnt=fav_categ_cnt,
        mean_cookbook_emissions=mean_cookbook_emissions,
        recommendations=recommendations,
        avg_ratings=avg_ratings,
        emissions=emissions,
        like_form=like_form,
        bookmark_form=bookmark_form,
        page=page,
        Npages=Npages,
        hist_emissions=hist_emissions,
    )
Exemple #10
0
def before_request():
    if current_user.is_authenticated:
        current_user.last_seen = datetime.utcnow()
        db.session.commit()
        g.search_form = SearchForm()