Exemple #1
0
def spotprices(region, start_isodate, end_isodate):
    start_date = pendulum.from_timestamp(int(start_isodate), tz=config.TZ)
    end_date = pendulum.from_timestamp(int(end_isodate), tz=config.TZ)
    print(start_date, end_date)

   
    
    data = {}
    if region == "ALL":
        for region in ["NSW", "QLD", "TAS", "VIC", "SA"]:
    
            search = Price.objects(date_time__gte=start_date, date_time__lte=end_date, region=region.upper(), price_type='AEMO_SPOT').order_by('date_time')
            result = [p for p in search]

            demand_search = Demand.objects(date_time__gte=start_date, date_time__lte=end_date, region=region.upper()).order_by('date_time')
            demand_result = [p for p in demand_search]
            # print(region)
            # print(demand_result)

            data[region] = {
                    'spot':{
                        # 'dates':[ p.date_time for p in result],
                        'prices':[ [pendulum.instance(p.date_time).timestamp() * 1000, p.price] for p in result]
                    },
                    'demand':{
                        # 'dates':[ p.date_time for p in demand_result],
                        'demand':[ [pendulum.instance(p.date_time).timestamp() * 1000, p.demand] for p in demand_result]
                    },
                }
    else:
        search = Price.objects(date_time__gte=start_date, date_time__lte=end_date, region=region.upper(), price_type='AEMO_SPOT').order_by('date_time')
        result = [p for p in search]

        demand_search = Demand.objects(date_time__gte=start_date, date_time__lte=end_date, region=region.upper()).order_by('date_time')
        demand_result = [p for p in demand_search]
        # print(region)
        # print(demand_result)

        data[region] = {
                'spot':{
                    # 'dates':[ p.date_time for p in result],
                    'prices':[ [pendulum.instance(p.date_time).timestamp() * 1000, p.price] for p in result]
                },
                'demand':{
                    # 'dates':[ p.date_time for p in demand_result],
                    'demand':[ [pendulum.instance(p.date_time).timestamp() * 1000, p.demand] for p in demand_result]
                },
            }


    
    return jsonify(data)
Exemple #2
0
from application.model.price import Price

print('Deleting LMP VCG')
counter = 1
for price in Price.objects(price_type='LMP_VCG'):
    counter += 1
    print(price, counter)
    price.delete()
print('Finished Deleting.')
Exemple #3
0
dates = [
    date for date in dates if (pendulum.instance(date).minute == 0
                               or pendulum.instance(date).minute == 30)
]
states = ['NSW', 'QLD', 'VIC', 'QLD', 'TAS']

participants = {}
for state in states:
    participants[state] = [
        p for p in participant_service.participant_metadata
        if participant_service.participant_metadata[p]['state'] == state
    ]

for state in states:
    for date in dates:
        if not Price.objects(date_time=date, region=state, price_type='BASIC'):
            print('Adding', state, date)
            # Basic settlement.
            rounded_time = pendulum.instance(date, tz=config.TZ)
            if rounded_time.minute > 30:
                rounded_time = rounded_time.start_of('hour').add(hours=1)
            else:
                rounded_time = rounded_time.start_of('hour').add(minutes=30)
            print('rounded time', rounded_time)
            demand = Demand.objects(date_time=rounded_time,
                                    region=state).get().demand
            print('demand', demand)

            stack = BidStack.objects(trading_period=date).get()

            all_bids = []
        used_bids.append(current)
    return {'price':current['price'], 'used_bids':used_bids}


dates = BidStack.objects().distinct('trading_period')
dates = [date for date in dates if (pendulum.instance(date).minute==0 or pendulum.instance(date).minute==30)]
states = ['NSW', 'QLD', 'VIC', 'QLD', 'TAS']

participants = {}
for state in states:
    participants[state] = [p for p in participant_service.participant_metadata if participant_service.participant_metadata[p]['state'] == state]

for state in states:
    for date in dates:
        
        if not Price.objects(date_time = date, region=state, price_type='TOTAL_INDUSTRIAL_COST_MIN_BID_ZERO'):
            print("TOTAL_INDUSTRIAL_COST_MIN_BID_ZERO", date)
            stack = BidStack.objects(trading_period=date).get()
            demand = Demand.objects(date_time=date, region=state).get().demand
            all_bids = []
           
            lookup_duids = {}
            lookup_participant_id = {}
            # Assemble a sortable bidstack
            for duid in stack.getParticipants():
                if duid in participants[state]:
                    bid = stack.getBid(duid)
                    # bidder_ids[duid] = bid.bid_day_offer.PARTICIPANTID
                    participant_id = bid.bid_day_offer.PARTICIPANTID 
                    if participant_id not in lookup_duids:
                        lookup_duids[participant_id] = []
def process_bidstacks(dt, timeseries={}):
    """ Derives competition indicators from bids submitted by generators.  """
    # Get bidstacks for every time period.
    bidstack = BidStack.objects.get(trading_period=dt)
    # Filter based on hour so we don't process tonnes of them
    timeseries[dt] = {} if not dt in timeseries else timeseries[dt]
    # Grab demand data.
    demand_req = Demand.objects(date_time=dt)
    regional_demand = {d.region: d.demand for d in demand_req}
    total_demand = int(
        float(sum([regional_demand[region] for region in regional_demand])))
    # Grab price data
    price_req = Price.objects(date_time=dt, price_type='AEMO_SPOT')
    regional_prices = {p.region: p.price for p in price_req}
    # Get a dict of all the residual supply indices, augmented with max network flows.
    network_residual_supply_indices = get_network_extended_residual_supply_indices(
        bidstack, regional_demand)
    network_extended_capacity_hhi = get_network_extended_capacity_hhi(
        bidstack, regional_demand)
    # Record price and demand.
    timeseries[dt]['weighted_average_price'] = float(
        sum([regional_prices[p] * regional_demand[p]
             for p in regional_prices])) / float(total_demand)
    timeseries[dt]['demand_ALL'] = total_demand
    timeseries[dt]['price'] = regional_prices
    for key in regional_demand:
        timeseries[dt]['demand_' + key] = regional_demand[key]
    for key in regional_prices:
        timeseries[dt]['price_' + key] = regional_prices[key]

    for state in config.STATES:
        # Get a dict of all the bid-based market shares for this time period
        generator_bid_shares = get_generator_bid_market_shares(bidstack, state)
        # Get a dict of all the residual supply indices for this time period
        residual_supply_indices = get_residual_supply_indices(
            bidstack, total_demand, state)
        # Get a dict of all the pivotal supplier indices for this time period.
        pivotal_supplier_indices = get_pivotal_supplier_indices(
            bidstack, total_demand, state)
        # Loop through every state and analyse / record
        if state != "ALL":
            # Get a dict of all firm weighted offers
            firm_weighted_offer_prices = get_firm_volume_weighted_offer_price(
                bidstack, state)
            for firm in firm_weighted_offer_prices:
                timeseries[dt][firm.lower() + '_weighted_offer_price_' +
                               state] = firm_weighted_offer_prices[firm]
            # Calculate average NERSI for all firms in the state.
            for firm in network_residual_supply_indices[state]:
                timeseries[dt][
                    firm.lower() + '_nersi_' +
                    state] = network_residual_supply_indices[state][firm]
            timeseries[dt]['average_nersi_' + state] = float(
                sum([
                    network_residual_supply_indices[state][firm]
                    for firm in network_residual_supply_indices[state]
                ])) / float(len(network_residual_supply_indices[state]))
            timeseries[dt]['minimum_nersi_' + state] = min([
                network_residual_supply_indices[state][firm]
                for firm in network_residual_supply_indices[state]
            ])
            # Record network-extended HHI
            timeseries[dt]['nechhi_' +
                           state] = network_extended_capacity_hhi[state]

        # Record results.
        timeseries[dt]['hhi_bids_' + state] = get_hhi(generator_bid_shares)
        timeseries[dt]['entropy_bids_' +
                       state] = get_entropy(generator_bid_shares)
        timeseries[dt]['four_firm_concentration_ratio_bids_' +
                       state] = get_four_firm_concentration_ratio(
                           generator_bid_shares)
        timeseries[dt]['average_rsi_' + state] = float(
            sum([
                residual_supply_indices[firm]
                for firm in residual_supply_indices
            ])) / float(len([f for f in residual_supply_indices]))
        timeseries[dt]['minimum_rsi_' + state] = min([
            residual_supply_indices[firm] for firm in residual_supply_indices
        ])
        timeseries[dt]['sum_psi_' + state] = sum([
            pivotal_supplier_indices[firm] for firm in pivotal_supplier_indices
        ])

        # Record RSI and PSI for each firm.
        for firm in residual_supply_indices:
            timeseries[dt][firm.lower() + '_rsi_' +
                           state] = residual_supply_indices[firm]
        for firm in pivotal_supplier_indices:
            timeseries[dt][firm.lower() + '_psi_' +
                           state] = pivotal_supplier_indices[firm]

    return timeseries
Exemple #6
0
from application import config


from application.model.bidstack import BidStack, DoesNotExist, bid_to_dict, bid_to_list

dates = BidStack.objects().distinct('trading_period')
dates = [date for date in dates if (pendulum.instance(date).minute==0 or pendulum.instance(date).minute==30)]
states = ['NSW', 'QLD', 'VIC', 'QLD', 'TAS']

participants = {}
for state in states:
    participants[state] = [p for p in participant_service.participant_metadata if participant_service.participant_metadata[p]['state'] == state]

for state in states:
    for date in dates:
        if not Price.objects(date_time = date, region=state, price_type='BASIC_MIN_BID_ZERO'):
            print('Adding', state, date)
            # Basic settlement.
            rounded_time = pendulum.instance(date, tz=config.TZ)
            if rounded_time.minute > 30:
                rounded_time = rounded_time.start_of('hour').add(hours=1)
            else:
                rounded_time = rounded_time.start_of('hour').add(minutes=30)
            print('rounded time', rounded_time)
            demand = Demand.objects(date_time=rounded_time, region=state).get().demand
            print('demand', demand)
            
            stack = BidStack.objects(trading_period=date).get()
            
            all_bids = []
            # Assemble a sortable bidstack
Exemple #7
0
def prices(region, start_isodate, end_isodate):
    start_date = pendulum.from_timestamp(int(start_isodate), tz=config.TZ)
    end_date = pendulum.from_timestamp(int(end_isodate), tz=config.TZ)
    print(start_date, end_date)
   
    search = Price.objects(date_time__gte=start_date, date_time__lte=end_date, region=region.upper(), price_type='AEMO_SPOT').order_by('date_time')
    result = [p for p in search]

    demand_search = Demand.objects(date_time__gte=start_date, date_time__lte=end_date, region=region.upper()).order_by('date_time')
    demand_result = [p for p in demand_search]

    basic_dispatch_price = Price.objects(date_time__gte=start_date, date_time__lte=end_date, region=region.upper(), price_type='BASIC').order_by('date_time')
    basic_dispatch_result = [p for p in basic_dispatch_price]
    
    basic_min_bid_zero_price = Price.objects(date_time__gte=start_date, date_time__lte=end_date, region=region.upper(), price_type='BASIC_MIN_BID_ZERO').order_by('date_time')
    basic_min_bid_zero_result = [p for p in basic_min_bid_zero_price]

    lmp_dispatch_price = Price.objects(date_time__gte=start_date, date_time__lte=end_date, region=region.upper(), price_type='LMP').order_by('date_time')
    lmp_dispatch_result = [p for p in lmp_dispatch_price]
    

    basic_vcg_price = Price.objects(date_time__gte=start_date, date_time__lte=end_date, region=region.upper(), price_type='BASIC_VCG').order_by('date_time')
    basic_vcg_result = [p for p in basic_vcg_price]

    basic_vcg_min_bid_zero_price = Price.objects(date_time__gte=start_date, date_time__lte=end_date, region=region.upper(), price_type='BASIC_VCG_MIN_BID_ZERO').order_by('date_time')
    basic_vcg_min_bid_zero_result = [p for p in basic_vcg_min_bid_zero_price]

    lmp_vcg_price = Price.objects(date_time__gte=start_date, date_time__lte=end_date, region=region.upper(), price_type='LMP_VCG').order_by('date_time')
    lmp_vcg_result = [p for p in lmp_vcg_price]

    lmp_vcg_min_bid_zero_price = Price.objects(date_time__gte=start_date, date_time__lte=end_date, region=region.upper(), price_type='LMP_VCG_MIN_BID_ZERO').order_by('date_time')
    lmp_vcg_min_bid_zero_result = [p for p in lmp_vcg_min_bid_zero_price]

    total_industrial_cost_price = Price.objects(date_time__gte=start_date, date_time__lte=end_date, region=region.upper(), price_type='TOTAL_INDUSTRIAL_COST').order_by('date_time')
    total_industrial_cost_result = [p for p in total_industrial_cost_price]

    total_industrial_cost_min_bid_zero_price = Price.objects(date_time__gte=start_date, date_time__lte=end_date, region=region.upper(), price_type='TOTAL_INDUSTRIAL_COST_MIN_BID_ZERO').order_by('date_time')
    total_industrial_cost_min_bid_zero_result = [p for p in total_industrial_cost_min_bid_zero_price]
    
    return jsonify({
                'spot':{
                    # 'dates':[ p.date_time for p in result],
                    'prices':[ [pendulum.instance(p.date_time).timestamp() * 1000, p.price] for p in result]
                },
                'demand':{
                    # 'dates':[ p.date_time for p in demand_result],
                    'demand':[ [pendulum.instance(p.date_time).timestamp() * 1000, p.demand] for p in demand_result]
                },
                'basic_dispatch':{
                    # 'dates':[ p.date_time for p in basic_dispatch_result],
                    'prices':[ [pendulum.instance(p.date_time).timestamp() * 1000, p.price] for p in basic_dispatch_result]
                },
                'basic_min_bid_zero':{
                    # 'dates':[ p.date_time for p in basic_min_bid_zero_result],
                    'prices':[ [pendulum.instance(p.date_time).timestamp() * 1000, p.price] for p in basic_min_bid_zero_result]
                },
                'lmp_dispatch':{
                    # 'dates':[ p.date_time for p in lmp_dispatch_result],
                    'prices':[ [pendulum.instance(p.date_time).timestamp() * 1000, p.price] for p in lmp_dispatch_result]
                },
                'basic_vcg_dispatch':{
                    # 'dates':[ p.date_time for p in basic_vcg_result],
                    'prices':[ [pendulum.instance(p.date_time).timestamp() * 1000, round(p.price, 2)] for p in basic_vcg_result]
                },
                'basic_vcg_min_bid_zero_dispatch':{
                    # 'dates':[ p.date_time for p in basic_vcg_min_bid_zero_result],
                    'prices':[ [pendulum.instance(p.date_time).timestamp() * 1000, round(p.price, 2)] for p in basic_vcg_min_bid_zero_result]
                },
                'lmp_vcg_dispatch':{
                    # 'dates':[ p.date_time for p in lmp_vcg_result],
                    'prices':[ [pendulum.instance(p.date_time).timestamp() * 1000, round(p.price, 2)] for p in lmp_vcg_result]
                },
                'lmp_vcg_min_bid_zero_dispatch':{
                    # 'dates':[ p.date_time for p in lmp_vcg_min_bid_zero_result],
                    'prices':[ [pendulum.instance(p.date_time).timestamp() * 1000, round(p.price, 2)] for p in lmp_vcg_min_bid_zero_result]
                },
                'total_industrial_cost':{
                    # 'dates':[ p.date_time for p in lmp_vcg_result],
                    'prices':[ [pendulum.instance(p.date_time).timestamp() * 1000, round(p.price, 2)] for p in total_industrial_cost_result]
                },
                'total_industrial_cost_min_bid_zero':{
                    # 'dates':[ p.date_time for p in lmp_vcg_result],
                    'prices':[ [pendulum.instance(p.date_time).timestamp() * 1000, round(p.price, 2)] for p in total_industrial_cost_min_bid_zero_result]
                },
            }
        )
Exemple #8
0
def process_bidstacks(start_date, end_date, timeseries={}):
    """ Derives competition indicators from bids submitted by generators.  """

    print("Processing Bidstacks")
    # Get bidstacks for every time period.
    query = BidStack.objects(trading_period__gte=start_date,
                             trading_period__lte=end_date).fields(
                                 trading_period=1, id=1)
    print('Retrieved Bidstacks')

    i = 0

    for bidstack in query:
        # Get the trading period label.
        dt = pendulum.instance(bidstack.trading_period)

        # if(dt.hour == 12 and dt.minute == 0 and dt.day %5 == 0):
        # Filter based on hour so we don't process tonnes of them
        if (dt.hour in RESEARCH_HOURS and dt.minute == 0):
            timeseries[dt] = {} if not dt in timeseries else timeseries[dt]
            print("Bid Analysis", dt)
            # Grab the bids and order in economic dispatch order.
            bidstack = BidStack.objects.get(id=bidstack.id)
            # simple_bids, srmc_bids, lrmc_bids = settle(bidstack)
            # print("Got bid stacks.")

            # Grab demand data.
            demand_req = Demand.objects(date_time=dt)
            regional_demand = {d.region: d.demand for d in demand_req}
            total_demand = int(
                float(
                    sum([
                        regional_demand[region] for region in regional_demand
                    ])))

            # Grab price data
            price_req = Price.objects(date_time=dt, price_type='AEMO_SPOT')
            regional_prices = {p.region: p.price for p in price_req}
            # print(regional_prices)
            weighted_average_price = float(
                sum([
                    regional_prices[p] * regional_demand[p]
                    for p in regional_prices
                ])) / float(total_demand)
            # print(weighted_average_price)

            # Get a dict of all the residual supply indices, augmented with max network flows.
            network_residual_supply_indices = get_network_extended_residual_supply_indices(
                bidstack, regional_demand)

            timeseries[dt]['weighted_average_price'] = weighted_average_price

            timeseries[dt]['demand_ALL'] = total_demand
            timeseries[dt]['datetime'] = dt
            timeseries[dt]['price'] = regional_prices

            for key in regional_demand:
                timeseries[dt]['demand_' + key] = regional_demand[key]
            for key in regional_prices:
                timeseries[dt]['price_' + key] = regional_prices[key]

            for state in STATES:
                # Get a dict of all the bid-based market shares for this time period
                generator_bid_shares = get_generator_bid_market_shares(
                    bidstack, state)

                # Get a dict of all the residual supply indices for this time period
                residual_supply_indices = get_residual_supply_indices(
                    bidstack, total_demand, state)

                # Get a dict of all the pivotal supplier indices for this time period.
                pivotal_supplier_indices = get_pivotal_supplier_indices(
                    bidstack, total_demand, state)

                if state != "ALL":
                    # Get a dict of all firm weighted offers
                    firm_weighted_offer_prices = get_firm_volume_weighted_offer_price(
                        bidstack, state)
                    for firm in firm_weighted_offer_prices:
                        timeseries[dt][
                            firm.lower() + '_weighted_offer_price_' +
                            state] = firm_weighted_offer_prices[firm]

                    # Calculate average NERSI for all firms in the state.
                    for firm in network_residual_supply_indices[state]:
                        timeseries[dt][
                            firm.lower() + '_nersi_' +
                            state] = network_residual_supply_indices[state][
                                firm]
                    timeseries[dt]['average_nersi_' + state] = float(
                        sum([
                            network_residual_supply_indices[state][firm]
                            for firm in network_residual_supply_indices[state]
                        ])) / float(len(
                            network_residual_supply_indices[state]))
                    timeseries[dt]['minimum_nersi_' + state] = min([
                        network_residual_supply_indices[state][firm]
                        for firm in network_residual_supply_indices[state]
                    ])

                # Record results.
                timeseries[dt]['hhi_bids_' +
                               state] = get_hhi(generator_bid_shares)
                timeseries[dt]['entropy_bids_' +
                               state] = get_entropy(generator_bid_shares)
                timeseries[dt]['four_firm_concentration_ratio_bids_' +
                               state] = get_four_firm_concentration_ratio(
                                   generator_bid_shares)
                timeseries[dt]['average_rsi_' + state] = float(
                    sum([
                        residual_supply_indices[firm]
                        for firm in residual_supply_indices
                    ])) / float(len([f for f in residual_supply_indices]))
                timeseries[dt]['minimum_rsi_' + state] = min([
                    residual_supply_indices[firm]
                    for firm in residual_supply_indices
                ])
                timeseries[dt]['sum_psi_' + state] = sum([
                    pivotal_supplier_indices[firm]
                    for firm in pivotal_supplier_indices
                ])

                for firm in residual_supply_indices:
                    timeseries[dt][firm.lower() + '_rsi_' +
                                   state] = residual_supply_indices[firm]
                for firm in pivotal_supplier_indices:
                    timeseries[dt][firm.lower() + '_psi_' +
                                   state] = pivotal_supplier_indices[firm]

    print("Finished Processing Bidstack")
    return timeseries
Exemple #9
0
from application.model.price import Price

print('Deleting BASIC')
for price in Price.objects(price_type='BASIC'):
    price.delete()
print('Finished Deleting.')
from application.model.price import Price

print('Deleting TOTAL_INDUSTRIAL_COST')
counter = 0
for price in Price.objects(price_type='TOTAL_INDUSTRIAL_COST'):
    print(price, counter)
    price.delete()
    counter += 1
print('Finished Deleting.')
Exemple #11
0
    date for date in dates if (pendulum.instance(date).minute == 0
                               or pendulum.instance(date).minute == 30)
]
states = ['NSW', 'QLD', 'VIC', 'QLD', 'TAS', 'SA']

participants = {}
for state in states:
    participants[state] = [
        p for p in participant_service.participant_metadata
        if participant_service.participant_metadata[p]['state'] == state
    ]

for state in states:
    for date in dates:
        if not Price.objects(date_time=date,
                             region=state,
                             price_type='BASIC_VCG_MIN_BID_ZERO'):
            print('Adding', state, date)
            # Basic settlement.
            rounded_time = pendulum.instance(date, tz=config.TZ)
            if rounded_time.minute > 30:
                rounded_time = rounded_time.start_of('hour').add(hours=1)
            else:
                rounded_time = rounded_time.start_of('hour').add(minutes=30)
            print('rounded time', rounded_time)
            demand = Demand.objects(date_time=rounded_time,
                                    region=state).get().demand
            print('demand', demand)

            stack = BidStack.objects(trading_period=date).get()
Exemple #12
0
        for bid in result['used_bids']:
            participant_total_industrial_cost[
                bid['state']] += bid['volume'] * bid['price']

        # Save the relevant price and volume
        for state in states:
            participant_payments[state][participant_id] = sum([
                bid['volume'] * bid['price']
                for bid in nationwide_key_result['used_bids']
                if bid['state'] == state
            ])  #sum of the bids
            participant_payments[state][participant_id] += (
                participant_total_industrial_cost[state] -
                total_industrial_cost[state])  #

    for state in states:
        total_cost = 0
        for participant_id in all_participant_ids:
            if participant_id in participant_payments[state]:
                total_cost += participant_payments[state][participant_id]

        average_price = total_cost / demand[state]

        price = Price(
            date_time=date,
            price=average_price,
            region=state,
            price_type='LMP_VCG',
        )
        price.save()
Exemple #13
0
def process_bidstacks(start_date, end_date):
    print("Processing Bidstacks")
    request = BidStack.objects(trading_period__gte=start_date,
                               trading_period__lte=end_date).fields(
                                   trading_period=1, id=1)
    print('Retrieved Bidstacks')

    i = 0
    timeseries = {}

    for bidstack in request:
        # Get the trading period label.
        dt = pendulum.instance(bidstack.trading_period)

        # if(dt.hour == 12 and dt.minute == 0 and dt.day %5 == 0):
        if (dt.hour in [0, 6, 12, 18, 24] and dt.minute == 0):
            print(dt)
            # Grab the bids and order in economic dispatch order.
            bidstack = BidStack.objects.get(id=bidstack.id)
            simple_bids, srmc_bids, lrmc_bids = settle(bidstack)
            # print("Got bid stacks.")

            # Grab demand data.
            demand_req = Demand.objects(date_time=dt)
            regional_demand = {d.region: d.demand for d in demand_req}
            total_demand = int(
                float(
                    sum([
                        regional_demand[region] for region in regional_demand
                    ])))

            # Grab price data
            price_req = Price.objects(date_time=dt, price_type='AEMO_SPOT')
            regional_prices = {p.region: p.price for p in price_req}
            weighted_average_price = float(
                sum([
                    regional_prices[p] * regional_demand[p]
                    for p in regional_prices
                ])) / float(total_demand)

            # Grab the representative strings.
            bids_string = get_representative_string(simple_bids, total_demand)
            srmc_string = get_representative_string(srmc_bids, total_demand)
            lrmc_string = get_representative_string(lrmc_bids, total_demand)
            # print("Got Representative Strings")

            metrics = {
                'srmc_string_comp':
                compare_representative_strings(bids_string, srmc_string),
                'lrmc_string_comp':
                compare_representative_strings(bids_string, lrmc_string),
                'srmc_fraction_MWh_different':
                get_fraction_MWh_different(bids_string, srmc_string,
                                           total_demand),
                'lrmc_fraction_MWh_different':
                get_fraction_MWh_different(bids_string, lrmc_string,
                                           total_demand),
                'datetime':
                dt,
                'price':
                regional_prices,
                'weighted_average_price':
                weighted_average_price,
                'total_demand':
                total_demand,
                'regional_demand':
                regional_demand,
                'strike': {
                    'simple': get_strike_price(simple_bids, total_demand),
                    'srmc': get_strike_price(srmc_bids, total_demand),
                    'lrmc': get_strike_price(lrmc_bids, total_demand),
                }
            }
            timeseries[dt] = metrics

    print("Finished Processing Bidstack")
    return timeseries
Exemple #14
0
    cumulative_supply = 0
    for bid in sorted_bids:
        if bid['duid'] in participant_states:  #if the participant is a registered generator, and thus has metadata
            current = bid
            cumulative_supply += bid['volume']
            used_bids.append(bid)
            if cumulative_supply > total_demand:
                break

    # Determine marginal price in each region
    prices = {state: 0 for state in states}
    for bid in used_bids:

        # Find which state the participant is in

        state = participant_states[bid['duid']]
        # Adjust the price in each state to find the maximum bid.
        if bid['price'] > prices[state] and bid['duid'] in participants[state]:
            prices[state] = bid['price']
        # prices[state] = bid['price'] if bid['price'] > prices[state] and bid['duid'] in participants[state] else prices[state]
    print(prices)
    for state in prices:

        price = Price(
            date_time=date,
            price=prices[state],
            region=state,
            price_type='LMP',
        )
        price.save()