Exemple #1
0
def add_to_ranking_list():
    playerid = request.args.get('playerid')
    listid = request.args.get('listid')
    player = Player.query.get(playerid)

    if not player:
        flash('Pelaajaa tunnuksella %s ei ole olemassa.' % playerid)
        return redirect(utils.get_next_url())

    if listid:
        rlist = RankingList.query.get(listid)

        ranking = Ranking(player, rlist)
        db.session().add(ranking)
        db.session.commit()

        rankingrecord = RankingRecord(ranking)
        db.session().add(rankingrecord)
        db.session().commit()

        flash('Pelaaja %s onnistuneesti lisätty listalle %s' %
              (playerid, listid))
        return redirect(utils.get_next_url())

    player = Player.query.get(playerid)
    lists = RankingList.get_suitable_ranking_lists(player)
    return render_template('players/add_player_to_ranking_list.html',
                           data=[player],
                           lists=lists)
Exemple #2
0
def train_post():
    dataset_name = request.form["path"]
    epochs = request.form["epochs"]
    batch_size = request.form["batch_size"]
    early_stopping = request.form.get("early_stopping") is not None

    metadata_path = os.path.join(paths["datasets"], dataset_name,
                                 METADATA_FILE)
    audio_folder = os.path.join(paths["datasets"], dataset_name, AUDIO_FOLDER)
    checkpoint_folder = os.path.join(paths["models"], dataset_name)
    pretrained_folder = os.path.join(paths["pretrained"], dataset_name)

    if request.files.get("pretrained_model"):
        os.makedirs(pretrained_folder, exist_ok=True)
        transfer_learning_path = os.path.join(pretrained_folder,
                                              "pretrained.pt")
        request.files["pretrained_model"].save(transfer_learning_path)
    else:
        transfer_learning_path = None

    start_progress_thread(
        train,
        metadata_path=metadata_path,
        dataset_directory=audio_folder,
        output_directory=checkpoint_folder,
        transfer_learning_path=transfer_learning_path,
        epochs=int(epochs),
        batch_size=int(batch_size),
        early_stopping=early_stopping,
    )

    return render_template("progress.html",
                           next_url=get_next_url(URLS, request.path))
Exemple #3
0
def create_dataset_post():
    min_confidence = request.form["confidence"]

    if request.form["name"]:
        output_folder = os.path.join(paths["datasets"], request.form["name"])
        if os.path.exists(output_folder):
            request.files = None
            raise Exception("Dataset name taken")
        os.makedirs(output_folder, exist_ok=True)

        text_path = os.path.join(output_folder, TEXT_FILE)
        audio_path = os.path.join(output_folder, AUDIO_FILE)
        forced_alignment_path = os.path.join(output_folder, ALIGNMENT_FILE)
        output_path = os.path.join(output_folder, AUDIO_FOLDER)
        label_path = os.path.join(output_folder, METADATA_FILE)
        info_path = os.path.join(output_folder, INFO_FILE)

        request.files["text_file"].save(text_path)
        request.files["audio_file"].save(audio_path)

        start_progress_thread(
            create_dataset,
            text_path=text_path,
            audio_path=audio_path,
            forced_alignment_path=forced_alignment_path,
            output_path=output_path,
            label_path=label_path,
            info_path=info_path,
            min_confidence=float(min_confidence),
        )
    else:
        output_folder = os.path.join(paths["datasets"], request.form["path"])
        suffix = get_suffix()
        text_path = os.path.join(output_folder, f"text-{suffix}.txt")
        audio_path = os.path.join(output_folder, f"audio-{suffix}.mp3")
        forced_alignment_path = os.path.join(output_folder,
                                             f"align-{suffix}.json")
        info_path = os.path.join(output_folder, INFO_FILE)

        request.files["text_file"].save(text_path)
        request.files["audio_file"].save(audio_path)

        existing_output_path = os.path.join(output_folder, AUDIO_FOLDER)
        existing_label_path = os.path.join(output_folder, METADATA_FILE)

        start_progress_thread(
            extend_existing_dataset,
            text_path=text_path,
            audio_path=audio_path,
            forced_alignment_path=forced_alignment_path,
            output_path=existing_output_path,
            label_path=existing_label_path,
            suffix=suffix,
            info_path=info_path,
            min_confidence=float(min_confidence),
        )

    return render_template("progress.html",
                           next_url=get_next_url(URLS, request.path))
Exemple #4
0
def get_list_info(ranking_list_id):
    rlist = RankingList.query.get(ranking_list_id)

    if not rlist:
        flash('Listaa tunnuksella %s ei ole olemassa' % ranking_list_id)
        return redirect(utils.get_next_url())

    rlist.populate_players()
    return render_template('rankings/ranking_list_info.html', data=[rlist])
Exemple #5
0
def register():
    form = RegisterForm(request.form)
    if form.validate_on_submit():
        user = User(form.name.data, form.username.data, form.role.data,
                    form.password.data)
        db.session().add(user)
        db.session().commit()
        flash(u'Onnistuneesti rekisteröitynyt käyttäjä: %s' % user.username)
        return redirect(utils.get_next_url())
    return render_template('auth/register.html', form=form)
def train_post():
    language = request.form["language"]
    symbols = get_symbols(language)
    dataset_name = request.form["dataset"]
    epochs = request.form["epochs"]
    batch_size = request.form["batch_size"]
    early_stopping = request.form.get("early_stopping") is not None
    iters_per_checkpoint = request.form["checkpoint_frequency"]
    iters_per_backup_checkpoint = request.form["backup_checkpoint_frequency"]
    train_size = 1 - float(request.form["validation_size"])
    alignment_sentence = request.form["alignment_sentence"]
    multi_gpu = request.form.get("multi_gpu") is not None
    checkpoint_path = (os.path.join(paths["models"], dataset_name,
                                    request.form["checkpoint"])
                       if request.form.get("checkpoint") else None)

    metadata_path = os.path.join(paths["datasets"], dataset_name,
                                 METADATA_FILE)
    use_metadata = os.path.isfile(metadata_path)
    trainlist_path = os.path.join(paths["datasets"], dataset_name, TRAIN_FILE)
    vallist_path = os.path.join(paths["datasets"], dataset_name,
                                VALIDATION_FILE)
    audio_folder = os.path.join(paths["datasets"], dataset_name, AUDIO_FOLDER)
    checkpoint_folder = os.path.join(paths["models"], dataset_name)

    if request.files.get("pretrained_model"):
        transfer_learning_path = os.path.join("data", "pretrained.pt")
        request.files["pretrained_model"].save(transfer_learning_path)
    else:
        transfer_learning_path = None

    start_progress_thread(
        train,
        metadata_path=metadata_path if use_metadata else None,
        trainlist_path=trainlist_path if not use_metadata else None,
        vallist_path=vallist_path if not use_metadata else None,
        audio_directory=audio_folder,
        output_directory=checkpoint_folder,
        symbols=symbols,
        checkpoint_path=checkpoint_path,
        transfer_learning_path=transfer_learning_path,
        epochs=int(epochs),
        batch_size=int(batch_size),
        early_stopping=early_stopping,
        multi_gpu=multi_gpu,
        iters_per_checkpoint=int(iters_per_checkpoint),
        iters_per_backup_checkpoint=int(iters_per_backup_checkpoint),
        train_size=train_size,
        alignment_sentence=alignment_sentence,
    )

    return render_template("progress.html",
                           next_url=get_next_url(URLS, request.path),
                           voice=Path(checkpoint_folder).stem)
Exemple #7
0
def get_player_info(playerid):
    player_data = Player.query.get(playerid)

    if player_data:
        rlists = RankingList.query.filter(
            RankingList.id.in_([
                r.list_id
                for r in Ranking.query.filter_by(player_id=player_data.id)
            ]))
        return render_template('players/player_info.html',
                               data=[player_data],
                               rlists=rlists)
    else:
        flash('Pelaajaa tunnuksella %s ei ole olemassa.' % playerid)
        return redirect(utils.get_next_url())
Exemple #8
0
def retire_player(playerid):
    player_data = Player.query.get(playerid)

    if not player_data:
        flash('Pelaajaa tunnuksella %s ei ole olemassa.' % playerid)
        return redirect(utils.get_next_url())

    rankings = Ranking.query.filter_by(player_id=player_data.id).all()
    for ranking in rankings:
        RankingRecord.query.filter_by(ranking_id=ranking.id).delete()
    Ranking.query.filter_by(player_id=player_data.id).delete()
    db.session().delete(player_data)
    db.session.commit()

    flash('Onnistuneesti poistettiin pelaaja %s.' % player_data.name)
    return redirect(url_for('index'))
Exemple #9
0
def edit_player(playerid):
    player = Player.query.get(playerid)

    if not player:
        flash('Pelaajaa tunnuksella %s ei ole olemassa.' % playerid)
        return redirect(utils.get_next_url())

    form = PlayerForm(player=player)

    if form.validate_on_submit():
        player = db.session.query(Player).get(playerid)
        player.name = form.name.data
        player.gender = form.gender.data
        player.dateofbirth = form.dob.data
        player.placeofbirth = form.pob.data
        db.session.commit()
        flash('Onnistuneesti muokattiin pelaajaa %s' % playerid)
        return render_template('players/player_info.html', data=[player])

    return render_template('players/edit_player.html', form=form)
Exemple #10
0
def create_dataset_post():
    min_confidence = float(request.form["confidence"])
    language = request.form["language"]
    combine_clips = request.form.get("combine_clips") is not None
    min_length = float(request.form["min_length"])
    max_length = float(request.form["max_length"])
    transcription_model = (
        Silero(language) if language in SILERO_LANGUAGES else DeepSpeech(
            os.path.join(paths["languages"], language, TRANSCRIPTION_MODEL)))
    symbols = get_symbols(language)
    text_file = SUBTITLE_FILE if request.files["text_file"].filename.endswith(
        ".srt") else TEXT_FILE

    if request.form["name"]:
        output_folder = os.path.join(paths["datasets"], request.form["name"])
        if os.path.exists(output_folder):
            request.files = None
            raise Exception("Dataset name taken")

        os.makedirs(output_folder, exist_ok=True)
        text_path = os.path.join(output_folder, text_file)
        audio_path = os.path.join(output_folder,
                                  request.files["audio_file"].filename)

        with open(text_path, "w", encoding=CHARACTER_ENCODING) as f:
            f.write(request.files["text_file"].read().decode(
                CHARACTER_ENCODING, "ignore").replace("\r\n", "\n"))
        request.files["audio_file"].save(audio_path)
        start_progress_thread(
            create_dataset,
            text_path=text_path,
            audio_path=audio_path,
            transcription_model=transcription_model,
            output_folder=output_folder,
            min_length=min_length,
            max_length=max_length,
            min_confidence=min_confidence,
            combine_clips=combine_clips,
            symbols=symbols,
        )
    else:
        output_folder = os.path.join(paths["datasets"],
                                     request.form["dataset"])
        suffix = get_suffix()
        text_path = os.path.join(output_folder, add_suffix(text_file, suffix))
        audio_path = os.path.join(
            output_folder,
            add_suffix(request.files["audio_file"].filename, suffix))

        with open(text_path, "w", encoding=CHARACTER_ENCODING) as f:
            f.write(request.files["text_file"].read().decode(
                CHARACTER_ENCODING, "ignore").replace("\r\n", "\n"))
        request.files["audio_file"].save(audio_path)

        start_progress_thread(
            extend_existing_dataset,
            text_path=text_path,
            audio_path=audio_path,
            transcription_model=transcription_model,
            output_folder=output_folder,
            suffix=suffix,
            min_length=min_length,
            max_length=max_length,
            min_confidence=min_confidence,
            combine_clips=combine_clips,
            symbols=symbols,
        )

    return render_template("progress.html",
                           next_url=get_next_url(URLS, request.path))