class Data_Getter_Pred: """ This class shall be used for obtaining the data from the source for prediction. Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ def __init__(self, log_database, log_collection, execution_id): #self.prediction_file='Prediction_FileFromDB/InputFile.csv' #self.file_object=file_object #self.logger_object=logger_object self.log_database = log_database self.log_collection = log_collection self.prediction_directory = "prediction-file-from-db" self.filename = "prediction-inputfile.csv" self.log_db_writer = App_LoggerDB(execution_id=execution_id) self.az_blob_mgt = AzureBlobManagement() def get_data(self): """ Method Name: get_data Description: This method reads the data from source. Output: A pandas DataFrame. On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the get_data method of the Data_Getter class') print("Entered the get_data method of the Data_Getter class") try: #self.data= pd.read_csv(self.filename) # reading the data file self.data = self.az_blob_mgt.readCSVFilefromDir( self.prediction_directory, self.filename) self.log_db_writer.log( self.log_database, self.log_collection, 'Data Load Successful.Exited the get_data method of the Data_Getter class' ) return self.data except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, 'Exception occured in get_data method of the Data_Getter class. Exception message: ' + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'Data Load Unsuccessful.Exited the get_data method of the Data_Getter class' ) raise Exception()
class trainModel: def __init__(self, execution_id): #self.log_writer = logger.App_Logger() #self.file_object = open("Training_Logs/ModelTrainingLog.txt", 'a+') self.log_db_writer = App_LoggerDB(execution_id=execution_id) self.log_database = "wafer_training_log1" self.log_collection = "model_training_log1" self.execution_id = execution_id def trainingModel(self): # Logging the start of Training self.log_db_writer.log(self.log_database, self.log_collection, "Start of Training") print("training started") #self.log_writer.log(self.file_object, 'Start of Training') try: # Getting the data from the source (data from csv stored in mongodb) #data_getter=data_loader.Data_Getter(self.file_object,self.log_writer) data_getter = data_loader.Data_Getter(self.log_database, self.log_collection, self.execution_id) data = data_getter.get_data() if data.__len__() == 0: self.log_db_writer.log(self.log_database, self.log_collection, "No record found to train model") print("No previous file available") return 0 """doing the data preprocessing""" preprocessor = preprocessing.Preprocessor(self.log_database, self.log_collection, self.execution_id) data = preprocessor.remove_columns( data, 'Wafer' ) # remove the unnamed column as it doesn't contribute to prediction. # create separate features and labels X, Y = preprocessor.separate_label_feature( data, label_column_name='Output') # check if missing values are present in the dataset is_null_present = preprocessor.is_null_present(X) # if missing values are there, replace them appropriately. if (is_null_present): X = preprocessor.impute_missing_values( X) # missing value imputation # check further which columns do not contribute to predictions # if the standard deviation for a column is zero, it means that the column has constant values # and they are giving the same output both for good and bad sensors # prepare the list of such columns to drop cols_to_drop = preprocessor.get_columns_with_zero_std_deviation(X) # drop the columns obtained above X = preprocessor.remove_columns(X, cols_to_drop) print("print X values") print(X) """ Applying the clustering approach""" kmeans = clustering.KMeansClustering( execution_id=self.execution_id) # object initialization. number_of_clusters = kmeans.elbow_plot( X ) # using the elbow plot to find the number of optimum clusters # Divide the data into clusters` X = kmeans.create_clusters(X, number_of_clusters) print("cluster shape details") print(X) #create a new column in the dataset consisting of the corresponding cluster assignments. X['Labels'] = Y # getting the unique clusters from our dataset list_of_clusters = X['Cluster'].unique() """parsing all the clusters and looking for the best ML algorithm to fit on individual cluster""" for i in list_of_clusters: cluster_data = X[X['Cluster'] == i] # filter the data for one cluster # Prepare the feature and Label columns cluster_features = cluster_data.drop(['Labels', 'Cluster'], axis=1) cluster_label = cluster_data['Labels'] # splitting the data into training and test set for each cluster one by one x_train, x_test, y_train, y_test = train_test_split( cluster_features, cluster_label, test_size=1 / 3, random_state=355) print("printing shape of X_train") print(x_train.shape) model_finder = tuner.Model_Finder( self.log_database, self.log_collection, self.execution_id) # object initialization #getting the best model for each of the clusters best_model_name, best_model = model_finder.get_best_model( x_train, y_train, x_test, y_test) #saving the best model to the directory. file_op = file_methods.File_Operation(self.log_database, self.log_collection, self.execution_id) save_model = file_op.save_model(best_model, best_model_name + str(i)) # logging the successful Training self.log_db_writer.log(self.log_database, self.log_collection, 'Successful End of Training') # self.file_object.close() except Exception: # logging the unsuccessful Training self.log_db_writer.log(self.log_database, self.log_collection, 'Unsuccessful End of Training') #self.file_object.close() raise Exception
class Prediction_Data_validation: """ This class shall be used for handling all the validation done on the Raw Prediction Data!!. Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ def __init__(self, path, execution_id): self.Batch_Directory = path self.execution_id = execution_id self.collection_name = "strength_schema_prediction" #code added by Avnish yadav self.database_name = "Wafer-sys" #code added by Avnish yadav self.logger_db_writer = App_LoggerDB( execution_id=execution_id) #code added by Avnish yadav self.mongdb = MongodbOperation() self.az_blob_mgt = AzureBlobManagement() self.good_directory_path = "good-raw-file-prediction-validated" self.bad_directory_path = "bad-raw-file-prediction-validated" def valuesFromSchema(self): """ Method Name: valuesFromSchema Description: This method extracts all the relevant information from the pre-defined "Schema" file. Output: LengthOfDateStampInFile, LengthOfTimeStampInFile, column_names, Number of Columns On Failure: Raise ValueError,KeyError,Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ log_database = "strength_prediction_log" log_collection = "values_from_schema_validation" try: log_database = "wafer_prediction_log" log_collection = "values_from_schema_validation" df_schema_training = self.mongdb.getDataFrameofCollection( self.database_name, self.collection_name) dic = {} [ dic.update({i: df_schema_training.loc[0, i]}) for i in df_schema_training.columns ] del df_schema_training #with open(self.schema_path, 'r') as f: # dic = json.load(f) # f.close() pattern = dic['SampleFileName'] LengthOfDateStampInFile = dic['LengthOfDateStampInFile'] LengthOfTimeStampInFile = dic['LengthOfTimeStampInFile'] column_names = dic['ColName'] NumberofColumns = dic['NumberofColumns'] #file = open("Training_Logs/valuesfromSchemaValidationLog.txt", 'a+') message = "LengthOfDateStampInFile:: %s" % LengthOfDateStampInFile + "\t" + "LengthOfTimeStampInFile:: %s" % LengthOfTimeStampInFile + "\t " + "NumberofColumns:: %s" % NumberofColumns + "\n" self.logger_db_writer.log(log_database, log_collection, message) #file.close() except ValueError: self.logger_db_writer.log( log_database, log_collection, "KeyError:Key value error incorrect key passed") raise ValueError except KeyError: self.logger_db_writer.log( log_database, log_collection, "KeyError:Key value error incorrect key passed") raise KeyError except Exception as e: self.logger_db_writer.log(log_database, log_collection, str(e)) raise e return LengthOfDateStampInFile, LengthOfTimeStampInFile, column_names, NumberofColumns def manualRegexCreation(self): """ Method Name: manualRegexCreation Description: This method contains a manually defined regex based on the "FileName" given in "Schema" file. This Regex is used to validate the filename of the prediction data. Output: Regex pattern On Failure: None Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ regex = "['cement_strength']+['\_'']+[\d_]+[\d]+\.csv" return regex def createDirectoryForGoodBadRawData(self): """ Method Name: createDirectoryForGoodBadRawData Description: This method creates directories to store the Good Data and Bad Data after validating the prediction data. Output: None On Failure: OSError Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ log_database = "strength_prediction_log" log_collection = "general_log" try: log_database = "strength_prediction_log" log_collection = "general_log" self.az_blob_mgt.createDir(self.good_directory_path, is_replace=True) self.az_blob_mgt.createDir(self.bad_directory_path, is_replace=True) msg = self.good_directory_path + " and " + self.bad_directory_path + " created successfully." self.logger_db_writer.log(log_database, log_collection, msg) except Exception as e: msg = "Error Occured in class Prediction_Data_validation method:createDirectoryForGoodBadRawData error: Failed to create directory " + self.good_directory_path + " and " + self.bad_directory_path self.logger_db_writer.log(log_database, log_collection, msg) raise e def deleteExistingGoodDataTrainingFolder(self): """ Method Name: deleteExistingGoodDataTrainingFolder Description: This method deletes the directory made to store the Good Data after loading the data in the table. Once the good files are loaded in the DB,deleting the directory ensures space optimization. Output: None On Failure: OSError Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ log_database = "strength_prediction_log" log_collection = "general_log" try: log_database = "strength_prediction_log" log_collection = "general_log" self.az_blob_mgt.deleteDir(self.good_directory_path) self.logger_db_writer.log( log_database, log_collection, self.good_directory_path + " deleted successfully!!") except Exception as e: msg = "Error Occured in class Raw_Data_validation method:deleteExistingGoodDataTrainingFolder Error occured while deleting :" + self.good_directory_path self.logger_db_writer.log(log_database, log_collection, msg) raise e def deleteExistingBadDataTrainingFolder(self): """ Method Name: deleteExistingBadDataTrainingFolder Description: This method deletes the directory made to store the bad Data. Output: None On Failure: OSError Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ log_database = "strength_prediction_log" log_collection = "general_log" try: log_database = "strength_prediction_log" log_collection = "general_log" self.az_blob_mgt.deleteDir(self.bad_directory_path) self.logger_db_writer.log( log_database, log_collection, self.bad_directory_path + " deleted successfully!!") except Exception as e: msg = "Error Occured in class Raw_Data_validation method:deleteExistingGoodDataTrainingFolder Error occured while deleting :" + self.good_directory_path self.logger_db_writer.log(log_database, log_collection, msg) raise e def moveBadFilesToArchiveBad(self): """ Method Name: moveBadFilesToArchiveBad Description: This method deletes the directory made to store the Bad Data after moving the data in an archive folder. We archive the bad files to send them back to the client for invalid data issue. Output: None On Failure: OSError Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ now = datetime.now() date = now.date() time = now.strftime("%H%M%S") log_database = "strength_prediction_log" log_collection = "general_log" try: log_database = "strength_prediction_log" log_collection = "general_log" # source = 'Training_Raw_files_validated/Bad_Raw/' source = self.bad_directory_path destination = "lap-" + self.execution_id self.logger_db_writer.log(log_database, log_collection, "Started moving bad raw data..") for file in self.az_blob_mgt.getAllFileNameFromDirectory(source): self.az_blob_mgt.moveFileinDir(source, destination, file) self.logger_db_writer.log( log_database, log_collection, "File:" + file + " moved to directory:" + destination + " successfully.") self.logger_db_writer.log( log_database, log_collection, "All bad raw file moved to directory:" + destination) self.az_blob_mgt.deleteDir(source) self.logger_db_writer.log(log_database, log_collection, "Deleting bad raw directory:" + source) except Exception as e: self.logger_db_writer.log( log_database, log_collection, "class Raw_Data_validation method:moveBadFilesToArchiveBad Error while moving bad files to archive:" + str(e)) raise e def validationFileNameRaw(self, regex, LengthOfDateStampInFile, LengthOfTimeStampInFile): """ Method Name: validationFileNameRaw Description: This function validates the name of the prediction csv file as per given name in the schema! Regex pattern is used to do the validation.If name format do not match the file is moved to Bad Raw Data folder else in Good raw data. Output: None On Failure: Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ # delete the directories for good and bad data in case last run was unsuccessful and folders were not deleted. self.createDirectoryForGoodBadRawData() onlyfiles = self.az_blob_mgt.getAllFileNameFromDirectory( self.Batch_Directory) try: log_database = "strength_prediction_log" log_collection = "name_validation_log" for filename in onlyfiles: if (re.match(regex, filename)): splitAtDot = re.split('.csv', filename) splitAtDot = (re.split('_', splitAtDot[0])) if len(splitAtDot[2]) == LengthOfDateStampInFile: if len(splitAtDot[3]) == LengthOfTimeStampInFile: self.az_blob_mgt.CopyFileinDir( self.Batch_Directory, self.good_directory_path, filename) self.logger_db_writer.log( log_database, log_collection, "Valid File name!! File moved to " + self.good_directory_path + filename) else: self.az_blob_mgt.CopyFileinDir( self.Batch_Directory, self.bad_directory_path, filename) msg = "Invalid File Name !! File moved to " + self.bad_directory_path + filename self.logger_db_writer.log(log_database, log_collection, msg) else: self.az_blob_mgt.CopyFileinDir(self.Batch_Directory, self.bad_directory_path, filename) msg = "Invalid File Name !! File moved to " + self.bad_directory_path + filename self.logger_db_writer.log(log_database, log_collection, msg) else: self.az_blob_mgt.CopyFileinDir(self.Batch_Directory, self.bad_directory_path, filename) msg = "Invalid File Name !! File moved to " + self.bad_directory_path + filename self.logger_db_writer.log(log_database, log_collection, msg) except Exception as e: msg = "Error occured while validating FileName " + str(e) self.logger_db_writer.log(log_database, log_collection, msg) raise e def validateColumnLength(self, NumberofColumns): """ Method Name: validateColumnLength Description: This function validates the number of columns in the csv files. It is should be same as given in the schema file. If not same file is not suitable for processing and thus is moved to Bad Raw Data folder. If the column number matches, file is kept in Good Raw Data for processing. The csv file is missing the first column name, this function changes the missing name to "Wafer". Output: None On Failure: Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ try: log_database = "strength_prediction_log" log_collection = "column_validation_log" self.logger_db_writer.log(log_database, log_collection, "Column length validation Started!!") #for file in listdir('Prediction_Raw_Files_Validated/Good_Raw/'): for file in self.az_blob_mgt.getAllFileNameFromDirectory( self.good_directory_path): #csv = pd.read_csv("Prediction_Raw_Files_Validated/Good_Raw/" + file) csv = self.az_blob_mgt.readCSVFilefromDir( self.good_directory_path, file) print(csv.shape) if csv.shape[1] == NumberofColumns: #csv.rename(columns={"Unnamed: 0": "Wafer"}, inplace=True) print(csv) #csv.to_csv("Prediction_Raw_Files_Validated/Good_Raw/" + file, index=None, header=True) self.az_blob_mgt.saveDataFrametoCSV( self.good_directory_path, file, csv, index=None, header=True) else: self.az_blob_mgt.moveFileinDir(self.good_directory_path, self.bad_directory_path, file) self.logger_db_writer.log( log_database, log_collection, "Invalid Column Length for the file!! " "File moved to Bad Raw Folder :: %s" % file) self.logger_db_writer.log(log_database, log_collection, "Column Length Validation Completed!!") except Exception as e: self.logger_db_writer.log(log_database, log_collection, 'Error Occured::' + str(e)) raise e def deletePredictionFile(self): try: log_database = "strenth_prediction_log" log_collection = "general_log" directory = "prediction-file" filename = "Prediction.csv" if directory in self.az_blob_mgt.dir_list: filenames = self.az_blob_mgt.getAllFileNameFromDirectory( directory_name=directory) if filename in filenames: self.az_blob_mgt.deleteFilefromDir( directory_name=directory, filename=filename) self.logger_db_writer.log( log_database, log_collection, filename + " is deleted from dir:" + directory + " successfully") except Exception as e: self.logger_db_writer.log( log_database, log_collection, "Error occure while deleting prediction file from prediction-file directory" + str(e)) raise e def validateMissingValuesInWholeColumn(self): """ Method Name: validateMissingValuesInWholeColumn Description: This function validates if any column in the csv file has all values missing. If all the values are missing, the file is not suitable for processing. SUch files are moved to bad raw data. Output: None On Failure: Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ try: log_database = "strength_prediction_log" log_collection = "missing_values_in_column" #f = open("Prediction_Logs/missingValuesInColumn.txt", 'a+') #self.logger.log(f, "Missing Values Validation Started!!") self.logger_db_writer.log(log_database, log_collection, "Missing Values Validation Started!!") #for file in listdir('Prediction_Raw_Files_Validated/Good_Raw/'): for file in self.az_blob_mgt.getAllFileNameFromDirectory( self.good_directory_path): #csv = pd.read_csv("Prediction_Raw_Files_Validated/Good_Raw/" + file) csv = self.az_blob_mgt.readCSVFilefromDir( self.good_directory_path, file) print(csv) count = 0 for columns in csv: if (len(csv[columns]) - csv[columns].count()) == len( csv[columns]): count += 1 #shutil.move("Prediction_Raw_Files_Validated/Good_Raw/" + file, # "Prediction_Raw_Files_Validated/Bad_Raw") self.az_blob_mgt.moveFileinDir( self.good_directory_path, self.bad_directory_path, file) #self.logger.log(f,"Invalid Column Length for the file!! File moved to Bad Raw Folder :: %s" % file) self.logger_db_writer.log( log_database, log_collection, "Invalid Column Length for the file!! File moved to Bad Raw Folder :: %s" % file) break if count == 0: csv.rename(columns={"Unnamed: 0": "Wafer"}, inplace=True) print("column unnamed may not be present") self.az_blob_mgt.saveDataFrametoCSV( self.good_directory_path, file, csv, index=None, header=True) #csv.to_csv("Prediction_Raw_Files_Validated/Good_Raw/" + file, index=None, header=True) except Exception as e: self.logger_db_writer.log(log_database, log_collection, "Error occured:" + str(e)) raise e
class KMeansClustering: """ This class shall be used to divide the data into clusters before training. Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ def __init__(self, execution_id): #self.file_object = file_object #self.logger_object = logger_object self.log_database="strength_training_log" self.log_collection="stg-training_main_log" self.execution_id=execution_id self.log_db_writer=App_LoggerDB(execution_id=execution_id) self.mongoDBObject = MongodbOperation() self.az_blob_mgt=AzureBlobManagement() def elbow_plot(self,data): """ Method Name: elbow_plot Description: This method saves the plot to decide the optimum number of clusters to the file. Output: A picture saved to the directory On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ self.log_db_writer.log(self.log_database,self.log_collection, 'Entered the elbow_plot method of the KMeansClustering class') wcss=[] # initializing an empty list try: for i in range (1,11): kmeans=KMeans(n_clusters=i,init='k-means++',random_state=42) # initializing the KMeans object kmeans.fit(data) # fitting the data to the KMeans Algorithm wcss.append(kmeans.inertia_) plt.plot(range(1,11),wcss) # creating the graph between WCSS and the number of clusters plt.title('The Elbow Method') plt.xlabel('Number of clusters') plt.ylabel('WCSS') #plt.show() plt.savefig('preprocessing_data/K-Means_Elbow.PNG') # saving the elbow plot locally # finding the value of the optimum cluster programmatically self.kn = KneeLocator(range(1, 11), wcss, curve='convex', direction='decreasing') self.log_db_writer.log(self.log_database,self.log_collection, 'The optimum number of clusters is: '+str(self.kn.knee)+' . Exited the elbow_plot method of the KMeansClustering class') return self.kn.knee except Exception as e: self.log_db_writer.log(self.log_database,self.log_collection,'Exception occured in elbow_plot method of the KMeansClustering class. Exception message: ' + str(e)) self.log_db_writer.log(self.log_database,self.log_collection,'Finding the number of clusters failed. Exited the elbow_plot method of the KMeansClustering class') raise Exception() def create_clusters(self,data,number_of_clusters): """ Method Name: create_clusters Description: Create a new dataframe consisting of the cluster information. Output: A datframe with cluster column On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ self.log_db_writer.log(self.log_database,self.log_collection, 'Entered the create_clusters method of the KMeansClustering class') self.data=data try: self.kmeans = KMeans(n_clusters=number_of_clusters, init='k-means++', random_state=42) #self.data = self.data[~self.data.isin([np.nan, np.inf, -np.inf]).any(1)] self.y_kmeans=self.kmeans.fit_predict(data) # divide data into clusters self.file_op = file_methods.File_Operation(self.log_database,self.log_collection,self.execution_id) self.save_model = self.file_op.save_model(self.kmeans, 'kkmeans') # saving the KMeans model to directory # passing 'Model' as the functions need three parameters self.data['Cluster']=self.y_kmeans # create a new column in dataset for storing the cluster information self.log_db_writer.log(self.log_database,self.log_collection, 'succesfully created '+str(self.kn.knee)+ 'clusters. Exited the create_clusters method of the KMeansClustering class') return self.data except Exception as e: self.log_db_writer.log(self.log_database,self.log_collection,'Exception occured in create_clusters method of the KMeansClustering class. Exception message: ' + str(e)) self.log_db_writer.log(self.log_database,self.log_collection,'Fitting the data to clusters failed. Exited the create_clusters method of the KMeansClustering class') raise Exception()
class dataTransformPredict: """ This class shall be used for transforming the Good Raw Training Data before loading it in Database!!. Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ def __init__(self, execution_id): self.execution_id = execution_id #self.goodDataPath = "Prediction_Raw_Files_Validated/Good_Raw" self.goodDataPath = "good-raw-file-prediction-validated" #self.logger = App_Logger() self.log_db_writer = App_LoggerDB(execution_id=execution_id) self.log_database = "wafer_prediction_log" self.az_blob_mgt = AzureBlobManagement() def replaceMissingWithNull(self): """ Method Name: replaceMissingWithNull Description: This method replaces the missing values in columns with "NULL" to store in the table. We are using substring in the first column to keep only "Integer" data for ease up the loading. This column is anyways going to be removed during prediction. Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ try: log_collection = "data_transform_log" #log_file = open("Prediction_Logs/dataTransformLog.txt", 'a+') #onlyfiles = [f for f in listdir(self.goodDataPath)] onlyfiles = self.az_blob_mgt.getAllFileNameFromDirectory( self.goodDataPath) for file in onlyfiles: #csv = pandas.read_csv(self.goodDataPath+"/" + file) csv = self.az_blob_mgt.readCsvFileFromDirectory( self.goodDataPath, file) csv.fillna('NULL', inplace=True) # #csv.update("'"+ csv['Wafer'] +"'") # csv.update(csv['Wafer'].astype(str)) csv['Wafer'] = csv['Wafer'].str[6:] #csv.to_csv(self.goodDataPath+ "/" + file, index=None, header=True) self.az_blob_mgt.saveDataFrameTocsv(self.goodDataPath, file, csv, idex=None, header=True) #self.logger.log(log_file," %s: File Transformed successfully!!" % file) self.log_db_writer.log( self.log_database, log_collection, "File {0} transformed successfully".format(file)) #log_file.write("Current Date :: %s" %date +"\t" + "Current time:: %s" % current_time + "\t \t" + + "\n") except Exception as e: #self.logger.log(log_file, "Data Transformation failed because:: %s" % e) #log_file.write("Current Date :: %s" %date +"\t" +"Current time:: %s" % current_time + "\t \t" + "Data Transformation failed because:: %s" % e + "\n") #log_file.close() self.log_db_writer.log( self.log_database, log_collection, 'Data Transformation failed because:' + str(e)) raise e
class trainModel: def __init__(self, execution_id): #self.log_writer = logger.App_Logger() #self.file_object = open("Training_Logs/ModelTrainingLog.txt", 'a+') self.log_db_writer = App_LoggerDB(execution_id=execution_id) self.log_database = "strength_training_log" self.log_collection = "stg_training_main_log" self.execution_id = execution_id def trainingModel(self): # Logging the start of Training self.log_db_writer.log(self.log_database, self.log_collection, "Start of Training") print("training started") try: # Getting the data from the source data_getter = data_loader.Data_Getter(self.log_database, self.log_collection, self.execution_id) data = data_getter.get_data() if data.__len__() == 0: self.log_db_writer.log(self.log_database, self.log_collection, "No record found to train model") print("No previous file available") return 0 """doing the data preprocessing""" preprocessor = preprocessing.Preprocessor(self.log_database, self.log_collection, self.execution_id) # check if missing values are present in the dataset is_null_present, cols_with_missing_values = preprocessor.is_null_present( data) # if missing values are there, replace them appropriately. if (is_null_present): data = preprocessor.impute_missing_values( data) # missing value imputation # get encoded values for categorical data #data = preprocessor.encodeCategoricalValues(data) # create separate features and labels X, Y = preprocessor.separate_label_feature( data, label_column_name='Concrete_compressive _strength') # drop the columns obtained above #X=preprocessor.remove_columns(X,cols_to_drop) X = preprocessor.logTransformation(X) print(X) """ Applying the clustering approach""" kmeans = clustering.KMeansClustering( self.execution_id) # object initialization. number_of_clusters = kmeans.elbow_plot( X ) # using the elbow plot to find the number of optimum clusters # Divide the data into clusters X = kmeans.create_clusters(X, number_of_clusters) print("cluster shape details") print(X) #create a new column in the dataset consisting of the corresponding cluster assignments. X['Labels'] = Y # getting the unique clusters from our dataset list_of_clusters = X['Cluster'].unique() """parsing all the clusters and looking for the best ML algorithm to fit on individual cluster""" for i in list_of_clusters: cluster_data = X[X['Cluster'] == i] # filter the data for one cluster # Prepare the feature and Label columns cluster_features = cluster_data.drop(['Labels', 'Cluster'], axis=1) cluster_label = cluster_data['Labels'] # splitting the data into training and test set for each cluster one by one x_train, x_test, y_train, y_test = train_test_split( cluster_features, cluster_label, test_size=1 / 3, random_state=36) x_train_scaled = preprocessor.standardScalingData(x_train) x_test_scaled = preprocessor.standardScalingData(x_test) model_finder = tuner.Model_Finder( self.log_database, self.log_collection, self.execution_id) # object initialization #getting the best model for each of the clusters best_model_name, best_model = model_finder.get_best_model( x_train_scaled, y_train, x_test_scaled, y_test) model_metrics = model_finder.get_model_metrics( best_model_name + str(i)) #saving the best model to the directory. file_op = file_methods.File_Operation(self.log_database, self.log_collection, self.execution_id) print(best_model_name + str(i)) save_model = file_op.save_model(best_model, best_model_name + str(i)) # logging the successful Training self.log_db_writer.log(self.log_database, self.log_collection, 'Successful End of Training') #self.log_database.close() except Exception: # logging the unsuccessful Training self.log_db_writer.log(self.log_database, self.log_collection, 'Unsuccessful End of Training') #self.log_database.close() raise Exception #trainModelObj = trainModel(1111) # object initialization #trainModelObj.trainingModel() # training the model for the files in the table
class Model_Finder: """ This class shall be used to find the model with best accuracy and AUC score. Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ def __init__(self, log_database, log_collection, execution_id): #self.file_object = file_object #self.logger_object = logger_object self.execution_id = execution_id self.log_db_writer = App_LoggerDB(execution_id=execution_id) self.log_database = log_database self.log_collection = log_collection self.az_blob_mgt = AzureBlobManagement() self.mongoDBObject = MongodbOperation() self.linearReg = LinearRegression() self.RandomForestReg = RandomForestRegressor() self.DecisionTreeReg = DecisionTreeRegressor() self.XGBoostReg = XGBRegressor() self.AdaboostReg = AdaBoostRegressor() self.svm = SVC() #self.mse = mean_squared_error() #self.mae = mean_absolute_error() def get_best_params_for_Random_Forest_Regressor(self, train_x, train_y): """ Method Name: get_best_params_for_Random_Forest_Regressor Description: get the parameters for Random_Forest_Regressor Algorithm which give the best accuracy. Use Hyper Parameter Tuning. Output: The model with the best parameters On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the RandomForestReg method of the Model_Finder class') try: # initializing with different combination of parameters self.param_grid_Random_forest_Tree = { "n_estimators": [10, 20, 30], "max_features": ["auto", "sqrt", "log2"], "min_samples_split": [2, 4, 8], "bootstrap": [True, False] } # Creating an object of the Grid Search class self.grid = GridSearchCV(self.RandomForestReg, self.param_grid_Random_forest_Tree, verbose=3, cv=5) # finding the best parameters self.grid.fit(train_x, train_y) # extracting the best parameters self.n_estimators = self.grid.best_params_['n_estimators'] self.max_features = self.grid.best_params_['max_features'] self.min_samples_split = self.grid.best_params_[ 'min_samples_split'] self.bootstrap = self.grid.best_params_['bootstrap'] # creating a new model with the best parameters self.randomForestReg = RandomForestRegressor( n_estimators=self.n_estimators, max_features=self.max_features, min_samples_split=self.min_samples_split, bootstrap=self.bootstrap) # training the mew models self.randomForestReg.fit(train_x, train_y) self.log_db_writer.log( self.log_database, self.log_collection, 'RandomForestReg best params: ' + str(self.grid.best_params_) + '. Exited the RandomForestReg method of the Model_Finder class' ) return self.randomForestReg except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, 'Exception occured in RandomForestReg method of the Model_Finder class. Exception message: ' + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'RandomForestReg Parameter tuning failed. Exited the knn method of the Model_Finder class' ) raise Exception() def get_best_params_for_xgboost(self, train_x, train_y): self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the XG boost Reg method of the Model_Finder class') try: # initializing with different combination of parameters self.param_XGboost = { 'learning_rate': [.001, 0.01, .1], 'max_depth': [2, 6, 8, 10, 14], 'min_child_weight': [1, 3, 5, 7] } #'gamma': [0.0,0.1,0.2] # Creating an object of the Grid Search class self.grid = GridSearchCV(self.XGBoostReg, self.param_XGboost, verbose=3, cv=5) # finding the best parameters self.grid.fit(train_x, train_y) # extracting the best parameters self.learning_rate = self.grid.best_params_['learning_rate'] self.max_depth = self.grid.best_params_['max_depth'] self.min_child_weight = self.grid.best_params_['min_child_weight'] #self.gamma = self.grid.best_params_['gamma'] # creating a new model with the best parameters self.xgboostReg = XGBRegressor( learning_rate=self.learning_rate, max_depth=self.max_depth, min_child_weight=self.min_child_weight) # training the mew models self.xgboostReg.fit(train_x, train_y) self.log_db_writer.log( self.log_database, self.log_collection, 'xgboostReg best params: ' + str(self.grid.best_params_) + '. Exited the DecisionTreeReg method of the Model_Finder class' ) return self.xgboostReg except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, 'Exception occured in xgboostReg method of the Model_Finder class. Exception message: ' + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'xgboostReg Parameter tuning failed. Exited the knn method of the Model_Finder class' ) raise Exception() def get_best_params_for_decisionTree(self, train_x, train_y): self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the Decision Tree Reg method of the Model_Finder class') try: # initializing with different combination of parameters self.param_decision_Tree = { 'criterion': ['mse', 'mae'], 'max_depth': [2, 6, 8, 10, 14, 18, 20], 'min_samples_leaf': [20, 40, 100], 'min_samples_split': [10, 20, 40] } # Creating an object of the Grid Search class self.grid = GridSearchCV(self.DecisionTreeReg, self.param_decision_Tree, verbose=3, n_jobs=1, cv=5) # finding the best parameters self.grid.fit(train_x, train_y) # extracting the best parameters self.criterion = self.grid.best_params_['criterion'] self.max_depth = self.grid.best_params_['max_depth'] self.min_samples_leaf = self.grid.best_params_['min_samples_leaf'] self.min_samples_split = self.grid.best_params_[ 'min_samples_split'] # creating a new model with the best parameters self.decisionTreeReg = DecisionTreeRegressor( criterion=self.criterion, max_depth=self.max_depth, min_samples_leaf=self.min_samples_leaf, min_samples_split=self.min_samples_split, ) # training the mew models self.decisionTreeReg.fit(train_x, train_y) self.log_db_writer.log( self.log_database, self.log_collection, 'DecisionTreeReg best params: ' + str(self.grid.best_params_) + '. Exited the DecisionTreeReg method of the Model_Finder class' ) return self.decisionTreeReg except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, 'Exception occured in DecisionTreeReg method of the Model_Finder class. Exception message: ' + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'DecisionTreeReg Parameter tuning failed. Exited the knn method of the Model_Finder class' ) raise Exception() def get_best_params_for_adaboostReg(self, train_x, train_y): self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the Adda boost Reg method of the Model_Finder class') try: # initializing with different combination of parameters self.param_ada_boost = { 'n_estimators': [500, 1000, 2000], 'learning_rate': [.001, 0.01, .1], 'random_state': [1] } # Creating an object of the Grid Search class self.grid = GridSearchCV(self.AdaboostReg, self.param_ada_boost, scoring='neg_mean_squared_error', verbose=3, n_jobs=1, cv=5) # finding the best parameters self.grid.fit(train_x, train_y) # extracting the best parameters self.n_estimators = self.grid.best_params_['n_estimators'] self.learning_rate = self.grid.best_params_['learning_rate'] # creating a new model with the best parameters- for adaboost base estimator is Decision tree with 3 depth self.adaboostReg = AdaBoostRegressor( n_estimators=self.n_estimators, learning_rate=self.learning_rate, random_state=1) #training the mew models self.adaboostReg.fit(train_x, train_y) self.log_db_writer.log( self.log_database, self.log_collection, 'Ada boost best params: ' + str(self.grid.best_params_) + '. Exited the AdaBoost Reg method of the Model_Finder class') return self.adaboostReg except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, 'Exception occured in Ada BoostReg method of the Model_Finder class. Exception message: ' + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'Adaboost Reg Parameter tuning failed. Exited the knn method of the Model_Finder class' ) raise Exception() def get_best_params_for_linearReg(self, train_x, train_y): """ Method Name: get_best_params_for_linearReg Description: get the parameters for LinearReg Algorithm which give the best accuracy. Use Hyper Parameter Tuning. Output: The model with the best parameters On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the get_best_params_for_linearReg method of the Model_Finder class' ) try: # initializing with different combination of parameters self.param_grid_linearReg = { 'fit_intercept': [True, False], 'normalize': [True, False], 'copy_X': [True, False] } # Creating an object of the Grid Search class self.grid = GridSearchCV(self.linearReg, self.param_grid_linearReg, verbose=3, cv=5) # finding the best parameters self.grid.fit(train_x, train_y) # extracting the best parameters self.fit_intercept = self.grid.best_params_['fit_intercept'] self.normalize = self.grid.best_params_['normalize'] self.copy_X = self.grid.best_params_['copy_X'] # creating a new model with the best parameters self.linReg = LinearRegression(fit_intercept=self.fit_intercept, normalize=self.normalize, copy_X=self.copy_X) # training the mew model self.linReg.fit(train_x, train_y) self.log_db_writer.log( self.log_database, self.log_collection, 'LinearRegression best params: ' + str(self.grid.best_params_) + '. Exited the get_best_params_for_linearReg method of the Model_Finder class' ) return self.linReg except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, 'Exception occured in get_best_params_for_linearReg method of the Model_Finder class. Exception message: ' + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'LinearReg Parameter tuning failed. Exited the get_best_params_for_linearReg method of the Model_Finder class' ) raise Exception() def get_model_metrics(self, name): self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the get_model Metrics of the Model_Finder class') self.Reg_metrics = pd.DataFrame(self.Regression_score) self.Reg_metrics.to_excel(name + '.xlsx') return self.Reg_metrics def get_best_model(self, train_x, train_y, test_x, test_y): """ Method Name: get_best_model Description: Find out the Model which has the best AUC score. Output: The best model name and the model object On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the get_best_model method of the Model_Finder class') try: self.decisionTreeReg = self.get_best_params_for_decisionTree( train_x, train_y) self.prediction_decisionTreeReg = self.decisionTreeReg.predict( test_x) # Predictions using the decisiontreeReg Model self.prediction_decisionTreeReg_error = r2_score( test_y, self.prediction_decisionTreeReg) self.decisionTreeReg_mse = mean_squared_error( test_y, self.prediction_decisionTreeReg) self.decisionTreeReg_mae = mean_absolute_error( test_y, self.prediction_decisionTreeReg) # create best model for Linear Regression self.LinearReg = self.get_best_params_for_linearReg( train_x, train_y) self.prediction_LinearReg = self.LinearReg.predict( test_x) # Predictions using the LinearReg Model self.LinearReg_error = r2_score(test_y, self.prediction_LinearReg) self.LinearReg_mse = mean_squared_error(test_y, self.prediction_LinearReg) self.LinearReg_mae = mean_absolute_error(test_y, self.prediction_LinearReg) # create best model for randomforest self.randomForestReg = self.get_best_params_for_Random_Forest_Regressor( train_x, train_y) self.prediction_randomForestReg = self.randomForestReg.predict( test_x) # Predictions using the randomForestReg Model self.prediction_randomForestReg_error = r2_score( test_y, self.prediction_randomForestReg) self.randomForestReg_mse = mean_squared_error( test_y, self.prediction_randomForestReg) self.randomForestReg_mae = mean_absolute_error( test_y, self.prediction_randomForestReg) # create best model for XGBoost self.XGBoostReg = self.get_best_params_for_xgboost( train_x, train_y) self.prediction_xgboostReg = self.XGBoostReg.predict( test_x) # Predictions using the xgboostReg Model self.prediction_xgboostReg_error = r2_score( test_y, self.prediction_xgboostReg) self.XGBoostReg_mse = mean_squared_error( test_y, self.prediction_xgboostReg) self.XGBoostReg_mae = mean_absolute_error( test_y, self.prediction_xgboostReg) # create best model for Decision Tree # create best model for Ada boost self.adaboostReg = self.get_best_params_for_adaboostReg( train_x, train_y) self.prediction_adaboostReg = self.adaboostReg.predict( test_x) # Predictions using the adaboostReg Model self.prediction_adaboostReg_error = r2_score( test_y, self.prediction_adaboostReg) self.adaboostReg_mse = mean_squared_error( test_y, self.prediction_adaboostReg) self.adaboostReg_mae = mean_absolute_error( test_y, self.prediction_adaboostReg) self.Regression_score = { "LinearRegression": [ self.LinearReg_error, self.LinearReg, self.LinearReg_mse, self.LinearReg_mae ], "randomForestRegressor": [ self.prediction_randomForestReg_error, self.randomForestReg, self.randomForestReg_mse, self.randomForestReg_mae ], "xg-BoostRegressor": [ self.prediction_xgboostReg_error, self.XGBoostReg, self.XGBoostReg_mse, self.XGBoostReg_mae ], "decisionTreeRegressor": [ self.prediction_decisionTreeReg_error, self.decisionTreeReg, self.decisionTreeReg_mse, self.decisionTreeReg_mae ], "ada-BoostRegressor": [ self.prediction_adaboostReg_error, self.adaboostReg, self.adaboostReg_mse, self.adaboostReg_mae ] } # metrics table self.select = list(self.Regression_score.values())[0][ 0] # assigming first value from key value pair to variable #self.name = list(self.r2score.keys())[0][0] # assigming first key from key value pair to variable for i in self.Regression_score.items( ): # for each i in a key value pair called by items() if i[1][0] >= self.select: self.select = i[1][0] self.name = i[0] self.model = i[1][1] print(self.name, self.model, " r2 score=", self.select) return self.name, self.model #comparing the two models #if(self.LinearReg_error < self.prediction_randomForestReg_error): # return 'RandomForestRegressor',self.randomForestReg #else: # # return 'LinearRegression',self.LinearReg except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, 'Exception occured in get_best_model method of the Model_Finder class. Exception message: ' + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'Model Selection Failed. Exited the get_best_model method of the Model_Finder class' ) raise Exception()
class Preprocessor: """ This class shall be used to clean and transform the data before training. Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ def __init__(self, log_database, log_collection, execution_id): self.log_database = log_database self.log_collection = log_collection self.execution_id = execution_id self.mongoDBObject = MongodbOperation() self.log_db_writer = App_LoggerDB(execution_id=execution_id) self.az_blob_mgt = AzureBlobManagement() def remove_columns(self, data, columns): """ Method Name: remove_columns Description: This method removes the given columns from a pandas dataframe. Output: A pandas DataFrame after removing the specified columns. On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ self.log_db_writer.log( self.log_database, self.log_collection, "Entered the remove_columns method of the Preprocessor class") self.data = data self.columns = columns try: self.useful_data = self.data.drop( labels=self.columns, axis=1) # drop the labels specified in the columns print("Useful data in dataframe") print(self.useful_data) self.log_db_writer.log( self.log_database, self.log_collection, "Column removal Successful.Exited the " "remove_columns method of the Preprocessor class") return self.useful_data except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, "Exception occured in remove_columns method" " of the Preprocessor class. Exception message: " + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'Column removal Unsuccessful. Exited the ' 'remove_columns method of the Preprocessor class') raise Exception() def separate_label_feature(self, data, label_column_name): """ Method Name: separate_label_feature Description: This method separates the features and a Label Coulmns. Output: Returns two separate Dataframes, one containing features and the other containing Labels . On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the separate_label_feature method of the Preprocessor class' ) try: self.X = data.drop( labels=label_column_name, axis=1 ) # drop the columns specified ,i,e output column and separate the feature columns self.Y = data[label_column_name] # Filter the Label columns self.log_db_writer.log( self.log_database, self.log_collection, 'Label Separation Successful. Exited the separate_label_feature method of the Preprocessor class' ) print(self.X, self.Y) return self.X, self.Y except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, 'Exception occured in separate_label_feature method of the Preprocessor class. Exception message: ' + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'Label Separation Unsuccessful. Exited the separate_label_feature' ' method of the Preprocessor class') raise Exception() def is_null_present(self, data): """ Method Name: is_null_present Description: This method checks whether there are null values present in the pandas Dataframe or not. Output: Returns a Boolean Value. True if null values are present in the DataFrame, False if they are not present. On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the is_null_present method of the Preprocessor class') self.null_present = False try: self.null_counts = data.isna().sum( ) # check for the count of null values per column for i in self.null_counts: if i > 0: self.null_present = True break if (self.null_present ): # write the logs to see which columns have null values dataframe_with_null = pd.DataFrame() dataframe_with_null['columns'] = data.columns dataframe_with_null['missing values count'] = np.asarray( data.isna().sum()) print(dataframe_with_null) #dataframe_with_null.to_csv('preprocessing_data/null_values.csv') # storing the null column information to file self.az_blob_mgt.saveDataFrametoCSV( "preprocessing-data", "null_values.csv", data_frame=dataframe_with_null) self.log_db_writer.log( self.log_database, self.log_collection, 'Finding missing values is a success.Data written' '[preprocessing-data] to the null values file. ' 'Exited the is_null_present method of the Preprocessor class') return self.null_present except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, 'Exception occured in is_null_present method of the Preprocessor class. Exception message: ' + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'Finding missing values failed. Exited the is_null_present method of the Preprocessor class' ) raise Exception() def impute_missing_values(self, data): """ Method Name: impute_missing_values Description: This method replaces all the missing values in the Dataframe using KNN Imputer. Output: A Dataframe which has all the missing values imputed. On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the impute_missing_values method of the Preprocessor class' ) self.data = data try: imputer = KNNImputer(n_neighbors=3, weights='uniform', missing_values=np.nan) self.new_array = imputer.fit_transform( self.data) # impute the missing values # convert the nd-array returned in the step above to a Dataframe self.new_data = pd.DataFrame(data=self.new_array, columns=self.data.columns) self.log_db_writer.log( self.log_database, self.log_collection, 'Imputing missing values Successful. Exited the impute_missing_values method of the Preprocessor class' ) return self.new_data except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, 'Exception occured in impute_missing_values method of the Preprocessor class. Exception message: ' + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'Imputing missing values failed. Exited the impute_missing_values method of the Preprocessor class' ) raise Exception() def get_columns_with_zero_std_deviation(self, data): """ Method Name: get_columns_with_zero_std_deviation Description: This method finds out the columns which have a standard deviation of zero. Output: List of the columns with standard deviation of zero On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the get_columns_with_zero_std_deviation method of the Preprocessor class' ) self.columns = data.columns self.data_n = data.describe() self.col_to_drop = [] try: for x in self.columns: if (self.data_n[x]['std'] == 0 ): # check if standard deviation is zero self.col_to_drop.append( x ) # prepare the list of columns with standard deviation zero self.log_db_writer.log( self.log_database, self.log_collection, 'Column search for Standard Deviation of Zero Successful. Exited the get_columns_with_zero_std_deviation method of the Preprocessor class' ) print(self.col_to_drop) return self.col_to_drop except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, 'Exception occured in get_columns_with_zero_std_deviation method of the Preprocessor class. Exception message: ' + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'Column search for Standard Deviation of Zero Failed. Exited the get_columns_with_zero_std_deviation method of the Preprocessor class' ) raise Exception()
class Preprocessor: """ This class shall be used to clean and transform the data before training. Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ def __init__(self, log_database, log_collection, execution_id): #self.file_object = file_object #self.logger_object = logger_object self.log_database = log_database self.log_collection = log_collection #self.execution_id=execution_id self.mongoDBObject = MongodbOperation() self.log_db_writer = App_LoggerDB(execution_id=execution_id) self.az_blob_mgt = AzureBlobManagement() def remove_columns(self, data, columns): """ Method Name: remove_columns Description: This method removes the given columns from a pandas dataframe. Output: A pandas DataFrame after removing the specified columns. On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the remove_columns method of the Preprocessor class') self.data = data self.columns = columns try: self.useful_data = self.data.drop( labels=self.columns, axis=1) # drop the labels specified in the columns self.log_db_writer.log( self.log_database, self.log_collection, 'Column removal Successful.Exited the remove_columns method of the Preprocessor class' ) return self.useful_data except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, 'Exception occured in remove_columns method of the Preprocessor class. Exception message: ' + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'Column removal Unsuccessful. Exited the remove_columns method of the Preprocessor class' ) raise Exception() def separate_label_feature(self, data, label_column_name): """ Method Name: separate_label_feature Description: This method separates the features and a Label Coulmns. Output: Returns two separate Dataframes, one containing features and the other containing Labels . On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the separate_label_feature method of the Preprocessor class' ) try: self.X = data.drop( labels=label_column_name, axis=1 ) # drop the columns specified and separate the feature columns self.Y = data[label_column_name] # Filter the Label columns self.log_db_writer.log( self.log_database, self.log_collection, 'Label Separation Successful. Exited the separate_label_feature method of the Preprocessor class' ) return self.X, self.Y except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, 'Exception occured in separate_label_feature method of the Preprocessor class. Exception message: ' + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'Label Separation Unsuccessful. Exited the separate_label_feature method of the Preprocessor class' ) raise Exception() def dropUnnecessaryColumns(self, data, columnNameList): """ Method Name: is_null_present Description: This method drops the unwanted columns as discussed in EDA section. Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ data = data.drop(columnNameList, axis=1) return data def replaceInvalidValuesWithNull(self, data): """ Method Name: is_null_present Description: This method replaces invalid values i.e. '?' with null, as discussed in EDA. Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ for column in data.columns: count = data[column][data[column] == '?'].count() if count != 0: data[column] = data[column].replace('?', np.nan) return data def is_null_present(self, data): """ Method Name: is_null_present Description: This method checks whether there are null values present in the pandas Dataframe or not. Output: Returns True if null values are present in the DataFrame, False if they are not present and returns the list of columns for which null values are present. On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the is_null_present method of the Preprocessor class') self.null_present = False self.cols_with_missing_values = [] self.cols = data.columns try: self.null_counts = data.isna().sum( ) # check for the count of null values per column for i in range(len(self.null_counts)): if self.null_counts[i] > 0: self.null_present = True self.cols_with_missing_values.append(self.cols[i]) if (self.null_present ): # write the logs to see which columns have null values dataframe_with_null = pd.DataFrame() dataframe_with_null['columns'] = data.columns dataframe_with_null['missing values count'] = np.asarray( data.isna().sum()) print(dataframe_with_null) #dataframe_with_null.to_csv('preprocessing_data/null_values.csv') # storing the null column information to file self.az_blob_mgt.saveDataFrametoCSV( "preprocessing-data", "null_values.csv", data_frame=dataframe_with_null) self.log_db_writer.log( self.log_database, self.log_collection, 'Finding missing values is a success.Data written to the null values file. Exited the is_null_present method of the Preprocessor class' ) return self.null_present, self.cols_with_missing_values except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, 'Exception occured in is_null_present method of the Preprocessor class. Exception message: ' + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'Finding missing values failed. Exited the is_null_present method of the Preprocessor class' ) raise Exception() def encodeCategoricalValues(self, data): """ Method Name: encodeCategoricalValues Description: This method encodes all the categorical values in the training set. Output: A Dataframe which has all the categorical values encoded. On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ data["class"] = data["class"].map({'p': 1, 'e': 2}) for column in data.drop(['class'], axis=1).columns: data = pd.get_dummies(data, columns=[column]) return data def encodeCategoricalValuesPrediction(self, data): """ Method Name: encodeCategoricalValuesPrediction Description: This method encodes all the categorical values in the prediction set. Output: A Dataframe which has all the categorical values encoded. On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ for column in data.columns: data = pd.get_dummies(data, columns=[column]) return data # def handleImbalanceDataset(self,X,Y): # """ # Method Name: handleImbalanceDataset # Description: This method handles the imbalance in the dataset by oversampling. # Output: A Dataframe which is balanced now. # On Failure: Raise Exception # # Written By: iNeuron Intelligence # Version: 1.0 # Revisions: None # """ # # # # rdsmple = RandomOverSampler() # x_sampled, y_sampled = rdsmple.fit_sample(X, Y) # # return x_sampled,y_sampled def standardScalingData(self, X): scalar = StandardScaler() X_scaled = scalar.fit_transform(X) return X_scaled def logTransformation(self, X): for column in X.columns: X[column] += 1 X[column] = np.log(X[column]) return X def impute_missing_values(self, data): """ Method Name: impute_missing_values Description: This method replaces all the missing values in the Dataframe using KNN Imputer. Output: A Dataframe which has all the missing values imputed. On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the impute_missing_values method of the Preprocessor class' ) self.data = data try: imputer = KNNImputer(n_neighbors=3, weights='uniform', missing_values=np.nan) self.new_array = imputer.fit_transform( self.data) # impute the missing values # convert the nd-array returned in the step above to a Dataframe self.new_data = pd.DataFrame(data=(self.new_array), columns=self.data.columns) self.log_db_writer.log( self.log_database, self.log_collection, 'Imputing missing values Successful. Exited the impute_missing_values method of the Preprocessor class' ) print(self.new_data) return self.new_data except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, 'Exception occured in impute_missing_values method of the Preprocessor class. Exception message: ' + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'Imputing missing values failed. Exited the impute_missing_values method of the Preprocessor class' ) raise Exception() def get_columns_with_zero_std_deviation(self, data): """ Method Name: get_columns_with_zero_std_deviation Description: This method finds out the columns which have a standard deviation of zero. Output: List of the columns with standard deviation of zero On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the get_columns_with_zero_std_deviation method of the Preprocessor class' ) self.columns = data.columns self.data_n = data.describe() self.col_to_drop = [] try: for x in self.columns: if (self.data_n[x]['std'] == 0 ): # check if standard deviation is zero self.col_to_drop.append( x ) # prepare the list of columns with standard deviation zero self.log_db_writer.log( self.log_database, self.log_collection, 'Column search for Standard Deviation of Zero Successful. Exited the get_columns_with_zero_std_deviation method of the Preprocessor class' ) print(self.col_to_drop) return self.col_to_drop except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, 'Exception occured in get_columns_with_zero_std_deviation method of the Preprocessor class. Exception message: ' + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'Column search for Standard Deviation of Zero Failed. Exited the get_columns_with_zero_std_deviation method of the Preprocessor class' ) raise Exception()
class pred_validation: def __init__(self, path, execution_id): self.raw_data = Prediction_Data_validation(path, execution_id) self.dataTransform = dataTransformPredict(execution_id) #self.dBOperation = dBOperation() #self.file_object = open("Prediction_Logs/Prediction_Log.txt", 'a+') #self.log_writer = logger.App_Logger() self.dBOperationMongoDB = DbOperationMongoDB(execution_id) self.log_database = "strength_prediction_log" self.log_collection = "stg-prediction_main_log" self.execution_id = execution_id self.logDB_write = App_LoggerDB(execution_id=execution_id) self.az_blob_mgt = AzureBlobManagement() def prediction_validation(self): try: self.logDB_write.log( self.log_database, self.log_collection, 'Start of Validation on files for prediction!!') #extracting values from prediction schema LengthOfDateStampInFile, LengthOfTimeStampInFile, column_names, noofcolumns = self.raw_data.valuesFromSchema( ) #getting the regex defined to validate filename regex = self.raw_data.manualRegexCreation() #validating filename of prediction files self.raw_data.validationFileNameRaw(regex, LengthOfDateStampInFile, LengthOfTimeStampInFile) #validating column length in the file self.raw_data.validateColumnLength(noofcolumns) #validating if any column has all values missing self.raw_data.validateMissingValuesInWholeColumn() self.logDB_write.log(self.log_database, self.log_collection, "Raw Data Validation Complete!!") self.logDB_write.log( self.log_database, self.log_collection, "Creating Prediction_Database and tables on the basis of given schema!!!" ) #create database with given name, if present open the connection! Create table with columns given in schema self.dBOperationMongoDB.insertIntoTableGoodData(column_names) self.logDB_write.log(self.log_database, self.log_collection, "Table creation Completed!!") self.logDB_write.log(self.log_database, self.log_collection, "Insertion of Data into Table started!!!!") #insert csv files in the table #self.dBOperationMongoDB.insertIntoTableGoodData('Prediction') #***************************** NEED TO CHECK BEFORE RUNNING****** #self.logDB_write.log(self.log_database,"Insertion in Table completed!!!") #self.logDB_write.log(self.log_database,"Deleting Good Data Folder!!!") #Delete the good data folder after loading files in table self.raw_data.deleteExistingGoodDataTrainingFolder() self.logDB_write.log(self.log_database, self.log_collection, "Good_Data folder deleted!!!") self.logDB_write.log( self.log_database, self.log_collection, "Moving bad files to Archive and deleting Bad_Data folder!!!") #Move the bad files to archive folder self.raw_data.moveBadFilesToArchiveBad() self.logDB_write.log( self.log_database, self.log_collection, "Bad files moved to archive!! Bad folder Deleted!!") self.logDB_write.log(self.log_database, self.log_collection, "Validation Operation completed!!") self.logDB_write.log(self.log_database, self.log_collection, "Extracting csv file from table") #export data in table to csvfile self.dBOperationMongoDB.selectingDatafromtableintocsv() except Exception as e: raise e
class DbOperationMongoDB: """ This class shall be used for handling all the mongodb operations. Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ def __init__(self, execution_id): self.mongodb=MongodbOperation() self.az_blob_mgt=AzureBlobManagement() self.logger_db_writer=App_LoggerDB(execution_id=execution_id) self.good_file_path="good-raw-file-prediction-validated" self.bad_file_path="bad-raw-file-prediction-validated" def insertIntoTableGoodData(self,column_names): """ Description: Load all csv file into mongo db database "prediction_database" ,collection:"Good_Raw_Data" from azure storage -good data and clear the storage space. :return: """ try: prediction_database="prediction_database" # mongodb name prediction_collection="Good_Raw_Data" # mongodb name database_name = "wafer_prediction_log" ## logger name collection_name = "db_insert_log" ## logger name self.mongodb.dropCollection(prediction_database,prediction_collection) self.logger_db_writer.log(database_name,collection_name,"Droping collection:"+prediction_collection+" from database:"+prediction_database) self.logger_db_writer.log(database_name, collection_name,"Starting loading of good files in database:training_database and collection: Good_Raw_Data") files = self.az_blob_mgt.getAllFileNameFromDirectory(self.good_file_path) self.logger_db_writer.log(database_name, collection_name,"No of file found in good-raw-file-train-validated " + str(len(files))) for file in files: try: self.logger_db_writer.log(database_name, collection_name, "Insertion of file +" + file + " started...") df = self.az_blob_mgt.readCSVFilefromDir(self.good_file_path, file) df.columns=column_names print("dataframe before insertion") print(df) self.mongodb.insertDataFrame(prediction_database, prediction_collection, df) self.logger_db_writer.log(database_name, collection_name, "File: {0} loaded successfully".format(file)) except Exception as e: self.logger_db_writer.log(database_name, collection_name, str(e)) self.az_blob_mgt.moveFileinDir(self.good_file_path, self.bad_file_path, file) self.logger_db_writer.log(database_name, collection_name, "File: " + file + " was not loaded successfully hence moved to dir:" + self.bad_file_path) except Exception as e: error_message = "Error occured in class:DbOperationMongoDB method:insertIntoTableGoodData error:" + str(e) self.logger_db_writer.log(database_name, collection_name, error_message) def selectingDatafromtableintocsv(self,): """ :return: """ try: directory_name="prediction-file-from-db" # azure storage name file_name="InputFile.csv" # azure storage name database_name = "wafer_prediction_log" # logger name collection_name = "export_to_csv" # logger name prediction_database="prediction_database" # mongodb name prediction_collection="Good_Raw_Data" # mongodb name msg="starting of loading of database:"+prediction_database+",collection:"+prediction_collection+" records into file:"+file_name self.logger_db_writer.log(database_name,collection_name,msg) df=self.mongodb.getDataFrameofCollection(prediction_database,prediction_collection) print("after dataframe from db extraction") print(df) msg="Good_Raw_data has been loaded into pandas dataframe" print(msg) self.logger_db_writer.log(database_name,collection_name,msg) self.az_blob_mgt.saveDataFrametoCSV(directory_name,file_name,df,index=None,header=True) # since the inputFile.csv has unammed column, added index =0 later removed as unnamed 0.1 is present in predictionDatavalidation.py ln 410. msg = "InputFile.csv created successfully in directory"+directory_name print(msg) self.logger_db_writer.log(database_name, collection_name, msg) except Exception as e: msg="Error occured in class:DbOperationMongoDB method:insertIntoTableGoodData error:"+str(e) self.logger_db_writer.log(database_name,collection_name,msg)
class DbOperationMongoDB: """ This class shall be used for handling all the SQL operations. Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ def __init__(self, execution_id): self.mongodb = MongodbOperation() self.az_blob_mgt = AzureBlobManagement() self.logger_db_writer = App_LoggerDB(execution_id=execution_id) self.good_file_path = "good-raw-file-train-validated" self.bad_file_path = "bad-raw-file-train-validated" def insertIntoTableGoodData(self, column_name): """ Description: Load all csv file into mongo db database "training_database" ,collection:"Good_Raw_Data" :return: """ database_name = "wafer_training_log" collection_name = "db_insert_log" try: database_name = "wafer_training_log" # logger name collection_name = "db_insert_log" # logger name self.logger_db_writer.log( database_name, collection_name, "Droping existing collection if present in database training_database" ) self.mongodb.dropCollection("training_database", "Good_Raw_Data") self.logger_db_writer.log( database_name, collection_name, "Starting loading of good files in database:training_database and collection: Good_Raw_Data" ) files = self.az_blob_mgt.getAllFileNameFromDirectory( self.good_file_path) self.logger_db_writer.log( database_name, collection_name, "No of file found in good-raw-file-train-validated " + str(len(files))) for file in files: try: self.logger_db_writer.log( database_name, collection_name, "Insertion of file " + file + " started...") df = self.az_blob_mgt.readCSVFilefromDir( self.good_file_path, file) df.columns = column_name self.mongodb.insertDataFrame("training_database", "Good_Raw_Data", df) self.logger_db_writer.log( database_name, collection_name, "File: {0} loaded successfully".format(file)) except Exception as e: self.logger_db_writer.log(database_name, collection_name, str(e)) self.az_blob_mgt.moveFileinDir(self.good_file_path, self.bad_file_path, file) self.logger_db_writer.log( database_name, collection_name, "File " + file + " was not loaded successfully hence moved tp dir:" + self.bad_file_path) except Exception as e: error_message = "Error occured in class:DbOperationMongoDB method:insertIntoTableGoodData error:" + str( e) self.logger_db_writer.log(database_name, collection_name, error_message) def selectingDatafromtableintocsv(self, ): """ :return: """ database_name = "wafer_training_log" collection_name = "export_to_csv" try: directory_name = "training-file-from-db" file_name = "InputFile" training_database = "training_database" training_collection = "Good_Raw_Data" msg = "starting of loading of database:training_database,collection:Good_Raw_Data records into InputFile.csv" print(msg) self.logger_db_writer.log(database_name, collection_name, msg) df = self.mongodb.getDataFrameofCollection(training_database, training_collection) print(df) msg = "Good_Raw_data has been loaded into pandas dataframe" self.logger_db_writer.log(database_name, collection_name, msg) self.az_blob_mgt.saveDataFrametoCSV(directory_name, file_name, df) msg = "InputFile.csv created successfully in directory " + directory_name self.logger_db_writer.log(database_name, collection_name, msg) except Exception as e: msg = "Error occured in class:DbOperationMongoDB method:insertIntoTableGoodData error:" + str( e) self.logger_db_writer.log(database_name, collection_name, msg)
class prediction: def __init__(self, path, execution_id): #self.file_object = open("Prediction_Logs/Prediction_Log.txt", 'a+') #self.log_writer = logger.App_Logger() #self.pred_data_val = Prediction_Data_validation(path) self.execution_id = execution_id self.log_database = "strength_prediction_log" self.log_collection = "prediction_log" self.log_db_writer = App_LoggerDB(execution_id) self.az_blob_mgt = AzureBlobManagement() if path is not None: self.pred_data_val = Prediction_Data_validation(path, execution_id) def predictionFromModel(self): try: self.pred_data_val.deletePredictionFile( ) #deletes the existing prediction file from last run! self.log_db_writer.log(self.log_database, self.log_collection, 'Start of Prediction') print("start of prediction") data_getter = data_loader_prediction.Data_Getter_Pred( self.log_database, self.log_collection, self.execution_id) data = data_getter.get_data() path = "" if data.__len__() == 0: self.log_db_writer.log( self.log_database, self.log_collection, "No data was present to perform prediction existing prediction method" ) return path, "No data was present to perform prediction" #code change # wafer_names=data['Wafer'] # data=data.drop(labels=['Wafer'],axis=1) preprocessor = preprocessing.Preprocessor(self.log_database, self.log_collection, self.execution_id) is_null_present, cols_with_missing_values = preprocessor.is_null_present( data) if (is_null_present): data = preprocessor.impute_missing_values(data) data = preprocessor.logTransformation(data) print("after log Transformation") print(data) #scale the prediction data data_scaled = pandas.DataFrame( preprocessor.standardScalingData(data), columns=data.columns) print("standard scaling for data completed") print(data_scaled) #data=data.to_numpy() file_loader = file_methods.File_Operation(self.log_database, self.log_collection, self.execution_id) kmeans = file_loader.load_model('kkmeans') ##Code changed #pred_data = data.drop(['Wafer'],axis=1) clusters = kmeans.predict( data_scaled) #drops the first column for cluster prediction data_scaled['clusters'] = clusters clusters = data_scaled['clusters'].unique() result = [] # initialize blank list for storing predicitons # with open('EncoderPickle/enc.pickle', 'rb') as file: #let's load the encoder pickle file to decode the values # encoder = pickle.load(file) for i in clusters: cluster_data = data_scaled[data_scaled['clusters'] == i] cluster_data = cluster_data.drop(['clusters'], axis=1) model_name = file_loader.find_correct_model_file(i) print(model_name) model = file_loader.load_model(model_name) for val in (model.predict(cluster_data.values)): result.append(val) result = pandas.DataFrame(result, columns=['strength-Predictions']) #result = list(model.predict(cluster_data)) #self.result = pandas.DataFrame(list(zip(result)), columns=['Prediction']) #for val in (model.predict(cluster_data.values)): # result.append(val) #print(self.result.shape) print("results after prediction with prediction columns") print(result) path = "Prediction-Output-File" #result.to_csv("Prediction_Output_File/Predictions.csv",header=True) #appends result to prediction file self.az_blob_mgt.saveDataFrametoCSV( path, "cement-strength-prediction.csv", result, header=True, mode="a+") self.log_db_writer.log(self.log_database, self.log_collection, 'End of Prediction') except Exception as ex: self.log_db_writer.log( self.log_database, self.log_collection, 'Error occured while running the prediction!! Error:: %s' % ex) raise ex return path, result.head().to_json(orient="records")
class train_validation: def __init__(self, path, execution_id): self.raw_data = Raw_Data_validation(path, execution_id) self.dataTransform = dataTransform(execution_id) self.dBOperationMongoDB = DbOperationMongoDB(execution_id) #self.file_object = open("Training_Logs/Training_Main_Log.txt", 'a+') self.log_database = "wafer_training_log" self.log_collection = "training_main_log" self.execution_id = execution_id #self.log_writer = logger.App_Logger() self.logDB_write = App_LoggerDB(execution_id=execution_id) self.az_blob_mgt = AzureBlobManagement() def train_validation(self): try: self.logDB_write.log(self.log_database, self.log_collection, 'Start of Validation on files!!') # extracting values from prediction schema LengthOfDateStampInFile, LengthOfTimeStampInFile, column_names, noofcolumns = self.raw_data.valuesFromSchema( ) # getting the regex defined to validate filename regex = self.raw_data.manualRegexCreation() # validating filename of prediction files self.raw_data.validationFileNameRaw(regex, LengthOfDateStampInFile, LengthOfTimeStampInFile) # validating column length in the file self.raw_data.validateColumnLength(noofcolumns) # validating if any column has all values missing self.raw_data.validateMissingValuesInWholeColumn() self.logDB_write.log(self.log_database, self.log_collection, "Raw Data Validation Complete!!") self.logDB_write.log(self.log_database, self.log_collection, "Starting Data Transforamtion!!") # replacing blanks in the csv file with "Null" values to insert in table self.dataTransform.replaceMissingWithNull() print("Missing value with NULL completed") self.logDB_write.log(self.log_database, self.log_collection, "DataTransformation Completed!!!") self.logDB_write.log( self.log_database, self.log_collection, "Creating database and collection if not exist then insert record" ) # create database with given name, if present open the connection! Create table with columns given in schema #self.dBOperationMongoDB.insertIntoTableGoodData(column_names) #self.logDB_write.log(self.log_database, self.log_collection, "Table creation Completed!!") #self.logDB_write.log(self.log_database, self.log_collection, "Insertion of Data into Table started!!!!") # insert csv files stored in azure storage in the table in mongodb location self.dBOperationMongoDB.insertIntoTableGoodData(column_names) self.logDB_write.log(self.log_database, self.log_collection, "Insertion in Table completed!!!") self.logDB_write.log(self.log_database, self.log_collection, "Deleting Good Data Folder!!!") # Delete the good data folder after loading files in table #self.raw_data.deleteExistingGoodDataTrainingFolder() self.logDB_write.log(self.log_database, self.log_collection, "Good_Data folder deleted!!!") self.logDB_write.log( self.log_database, self.log_collection, "Moving bad files to Archive and deleting Bad_Data folder!!!") # Move the bad files to archive folder self.raw_data.moveBadFilesToArchiveBad() self.logDB_write.log( self.log_database, self.log_collection, "Bad files moved to archive!! Bad folder Deleted!!") self.logDB_write.log(self.log_database, self.log_collection, "Validation Operation completed!!") self.logDB_write.log(self.log_database, self.log_collection, "Extracting csv file from table") # export data in table from mongodb to csvfile self.dBOperationMongoDB.selectingDatafromtableintocsv() #self.file_object.close() except Exception as e: raise e
class Model_Finder: """ This class shall be used to find the model with best accuracy and AUC score. Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ def __init__(self, log_database, log_collection, execution_id): #self.file_object = file_object #self.logger_object = logger_object self.execution_id = execution_id self.log_db_writer = App_LoggerDB(execution_id=execution_id) self.log_database = log_database self.log_collection = log_collection self.az_blob_mgt = AzureBlobManagement() self.mongoDBObject = MongodbOperation() self.clf = RandomForestClassifier() self.xgb = XGBClassifier(objective='binary:logistic') def get_best_params_for_random_forest(self, train_x, train_y): """ Method Name: get_best_params_for_random_forest Description: get the parameters for Random Forest Algorithm which give the best accuracy. Use Hyper Parameter Tuning. Output: The model with the best parameters On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the get_best_params_for_random_forest method of the Model_Finder class' ) try: # initializing with different combination of parameters self.param_grid = { "n_estimators": [10, 50, 100, 130], "criterion": ['gini', 'entropy'], "max_depth": range(2, 4, 1), "max_features": ['auto', 'log2'] } #Creating an object of the Grid Search class self.grid = GridSearchCV(estimator=self.clf, param_grid=self.param_grid, cv=5, verbose=3) #finding the best parameters self.grid.fit(train_x, train_y) #extracting the best parameters self.criterion = self.grid.best_params_['criterion'] self.max_depth = self.grid.best_params_['max_depth'] self.max_features = self.grid.best_params_['max_features'] self.n_estimators = self.grid.best_params_['n_estimators'] #creating a new model with the best parameters self.clf = RandomForestClassifier(n_estimators=self.n_estimators, criterion=self.criterion, max_depth=self.max_depth, max_features=self.max_features) # training the mew model self.clf.fit(train_x, train_y) self.log_db_writer.log( self.log_database, self.log_collection, 'Random Forest best params: ' + str(self.grid.best_params_) + '. Exited the get_best_params_for_random_forest method of the Model_Finder class' ) return self.clf except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, 'Exception occured in get_best_params_for_random_forest method of the Model_Finder class. Exception message: ' + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'Random Forest Parameter tuning failed. Exited the get_best_params_for_random_forest method of the Model_Finder class' ) raise Exception() def get_best_params_for_xgboost(self, train_x, train_y): """ Method Name: get_best_params_for_xgboost Description: get the parameters for XGBoost Algorithm which give the best accuracy. Use Hyper Parameter Tuning. Output: The model with the best parameters On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the get_best_params_for_xgboost method of the Model_Finder class' ) try: # initializing with different combination of parameters self.param_grid_xgboost = { 'learning_rate': [0.5, 0.1, 0.01, 0.001], 'max_depth': [3, 5, 10, 20], 'n_estimators': [10, 50, 100, 200] } # Creating an object of the Grid Search class self.grid = GridSearchCV( XGBClassifier(objective='binary:logistic'), self.param_grid_xgboost, verbose=3, cv=5) # finding the best parameters self.grid.fit(train_x, train_y) # extracting the best parameters self.learning_rate = self.grid.best_params_['learning_rate'] self.max_depth = self.grid.best_params_['max_depth'] self.n_estimators = self.grid.best_params_['n_estimators'] # creating a new model with the best parameters self.xgb = XGBClassifier(learning_rate=self.learning_rate, max_depth=self.max_depth, n_estimators=self.n_estimators) # training the mew model self.xgb.fit(train_x, train_y) self.log_db_writer.log( self.log_database, self.log_collection, 'XGBoost best params: ' + str(self.grid.best_params_) + '. Exited the get_best_params_for_xgboost method of the Model_Finder class' ) return self.xgb except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, 'Exception occured in get_best_params_for_xgboost method of the Model_Finder class. Exception message: ' + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'XGBoost Parameter tuning failed. Exited the get_best_params_for_xgboost method of the Model_Finder class' ) raise Exception() def get_best_model(self, train_x, train_y, test_x, test_y): """ Method Name: get_best_model Description: Find out the Model which has the best AUC score. Output: The best model name and the model object On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the get_best_model method of the Model_Finder class') # create best model for XGBoost try: self.xgboost = self.get_best_params_for_xgboost(train_x, train_y) self.prediction_xgboost = self.xgboost.predict( test_x) # Predictions using the XGBoost Model if len( test_y.unique() ) == 1: #if there is only one label in y, then roc_auc_score returns error. We will use accuracy in that case self.xgboost_score = accuracy_score(test_y, self.prediction_xgboost) self.log_db_writer.log(self.log_database, self.log_collection, 'Accuracy for XGBoost:' + str(self.xgboost_score)) # Log AUC else: self.xgboost_score = roc_auc_score( test_y, self.prediction_xgboost) # AUC for XGBoost self.log_db_writer.log(self.log_database, self.log_collection, 'AUC for XGBoost:' + str(self.xgboost_score)) # Log AUC # create best model for Random Forest self.random_forest = self.get_best_params_for_random_forest( train_x, train_y) self.prediction_random_forest = self.random_forest.predict( test_x) # prediction using the Random Forest Algorithm if len( test_y.unique() ) == 1: #if there is only one label in y, then roc_auc_score returns error. We will use accuracy in that case self.random_forest_score = accuracy_score( test_y, self.prediction_random_forest) self.log_db_writer.log( self.log_database, self.log_collection, 'Accuracy for RF:' + str(self.random_forest_score)) else: self.random_forest_score = roc_auc_score( test_y, self.prediction_random_forest) # AUC for Random Forest self.log_db_writer.log( self.log_database, self.log_collection, 'AUC for RF:' + str(self.random_forest_score)) #comparing the two models if (self.random_forest_score < self.xgboost_score): return 'XGBoost', self.xgboost else: return 'RandomForest', self.random_forest except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, 'Exception occured in get_best_model method of the Model_Finder class. Exception message: ' + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'Model Selection Failed. Exited the get_best_model method of the Model_Finder class' ) raise Exception()
class DbOperationMongoDB: def __init__(self, execution_id): self.mongodb = MongoDBOperation() self.az_blob_mgt = AzureBlobManagement() self.logger_db_writer = App_LoggerDB(execution_id=execution_id) self.good_file_path = "good-raw-file-prediction-validated" self.bad_file_path = "bad-raw-file-prediction-validated" def insertIntoTableGoodData(self, column_names): """ Description: Load all csv file into mongo db database "training_database" ,collection:"Good_Raw_Data" :return: """ try: prediction_database = "prediction_database" prediction_collection = "Good_Raw_Data" database_name = "wafer_prediction_log" collection_name = "db_insert_log" self.mongodb.dropCollection(prediction_database, prediction_collection) self.logger_db_writer.log( database_name, collection_name, "Droping collection:" + prediction_collection + " from database:" + prediction_database) self.logger_db_writer.log( database_name, collection_name, "Starting loading of good files in database:training_database and collection: Good_Raw_Data" ) files = self.az_blob_mgt.getAllFileNameFromDirectory( self.good_file_path) self.logger_db_writer.log( database_name, collection_name, "No of file found in good-raw-file-train-validated " + str(len(files))) for file in files: try: self.logger_db_writer.log( database_name, collection_name, "Insertion of file +" + file + " started...") df = self.az_blob_mgt.readCsvFileFromDirectory( self.good_file_path, file) df.columns = column_names self.mongodb.insertDataFrame(prediction_database, prediction_collection, df) self.logger_db_writer.log( database_name, collection_name, "File: {0} loaded successfully".format(file)) except Exception as e: self.logger_db_writer.log(database_name, collection_name, str(e)) self.az_blob_mgt.moveFileInDirectory( self.good_file_path, self.bad_file_path, file) self.logger_db_writer.log( database_name, collection_name, "File: " + file + " was not loaded successfully hence moved tp dir:" + self.bad_file_path) except Exception as e: error_message = "Error occured in class:DbOperationMongoDB method:insertIntoTableGoodData error:" + str( e) self.logger_db_writer.log(database_name, collection_name, error_message) def selectingDatafromtableintocsv(self, ): """ :return: """ try: directory_name = "prediction-file-from-db" file_name = "InputFile.csv" database_name = "wafer_prediction_log" collection_name = "export_to_csv" prediction_database = "prediction_database" prediction_collection = "Good_Raw_Data" msg = "starting of loading of database:" + prediction_database + ",collection:" + prediction_collection + " records into file:" + file_name self.logger_db_writer.log(database_name, collection_name, msg) df = self.mongodb.getDataFrameofCollection(prediction_database, prediction_collection) msg = "Good_Raw_data has been loaded into pandas dataframe" self.logger_db_writer.log(database_name, collection_name, msg) self.az_blob_mgt.saveDataFrameTocsv(directory_name, file_name, df) msg = "InputFile.csv created successfully in directory" + directory_name self.logger_db_writer.log(database_name, collection_name, msg) except Exception as e: msg = "Error occured in class:DbOperationMongoDB method:insertIntoTableGoodData error:" + str( e) self.logger_db_writer.log(database_name, collection_name, msg)
class File_Operation: """ This class shall be used to save the model after training and load the saved model for prediction. Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ def __init__(self, log_database, log_collection, execution_id): #self.file_object = file_object #self.logger_object = logger_object #self.model_directory='models/' self.log_database = log_database self.log_collection = log_collection self.execution_id = execution_id self.log_db_writer = App_LoggerDB(execution_id=self.execution_id) self.model_directory = 'model' self.az_blob_mgt = AzureBlobManagement() def save_model(self, model, filename): """` Method Name: save_model Description: Save the model file to directory Outcome: File gets saved On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the save_model method of the File_Operation class') directory_name = self.model_directory + '-' + filename try: self.az_blob_mgt.createDir( directory_name, is_replace=True) # create or replace directory # path = os.path.join(self.model_directory,filename) #create seperate directory for each cluster # if os.path.isdir(path): #remove previously existing models for each clusters # shutil.rmtree(self.model_directory) # os.makedirs(path) #else: # os.makedirs(path) # # with open(path +'/' + filename+'.sav', # 'wb') as f: # pickle.dump(model, f) # save the model to file self.az_blob_mgt.saveObject(directory_name=directory_name, filename=filename + '.sav', object_name=model) self.log_db_writer.log( self.log_database, self.log_collection, 'Model File ' + filename + ' saved. Exited the save_model method of the Model_Finder class' ) return 'success' except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, 'Exception occured in save_model method of the' ' Model_Finder class. Exception message: ' + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'Model File ' + filename + ' could not be saved. Exited the save_model method of the Model_Finder class' ) raise Exception() def load_model(self, filename): """ Method Name: load_model Description: load the model file to memory Output: The Model file loaded in memory On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the load_model method of the File_Operation class') try: directory = self.model_directory + '-' + filename filename = filename + '.sav' object_model = self.az_blob_mgt.loadObject(directory, filename) self.log_db_writer.log( self.log_database, self.log_collection, 'Model File ' + filename + ' loaded. Exited ' 'the load_model method of the Model_Finder class') #with open(self.model_directory + filename + '/' + filename + '.sav', # 'rb') as f: # self.log_db_writer.log(self.log_database,self.log_collection, # 'Model File ' + filename + ' loaded. Exited the load_model method of the Model_Finder class') return object_model except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, 'Exception occured in load_model method of the Model_Finder class. Exception message: ' + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'Model File ' + filename + ' could not be saved. Exited the load_model method of the Model_Finder class' ) raise Exception() def find_correct_model_file(self, cluster_number): """ Method Name: find_correct_model_file Description: Select the correct model based on cluster number Output: The Model file On Failure: Raise Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ self.log_db_writer.log( self.log_database, self.log_collection, 'Entered the find_correct_model_file method of the File_Operation class' ) try: self.cluster_number = cluster_number self.folder_name = self.model_directory self.list_of_model_files = [] self.required_files = self.az_blob_mgt.dir_list self.list_of_files = [] # selecting model directory only #self.list_of_files = os.listdir(self.folder_name) for dir in self.required_files: if re.search("^model[-][a-zA-z]{2,17}[0-9]", dir): self.list_of_files.append(dir) for self.file in self.list_of_files: try: #selecting model file name in models models = self.az_blob_mgt.getAllFileNameFromDirectory( self.file) for model_name_ in models: if (model_name_.index(str(self.cluster_number)) != -1): self.model_name = model_name_ except: continue self.model_name = self.model_name.split('.')[0] self.log_db_writer.log( self.log_database, self.log_collection, 'Exited the find_correct_model_file method of the Model_Finder class.' ) return self.model_name except Exception as e: self.log_db_writer.log( self.log_database, self.log_collection, 'Exception occured in find_correct_model_file method of the Model_Finder class. Exception message: ' + str(e)) self.log_db_writer.log( self.log_database, self.log_collection, 'Exited the find_correct_model_file method of the Model_Finder class with Failure' ) raise Exception()
class Raw_Data_validation: """ This class shall be used for handling all the validation done on the Raw Training Data!!. Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ def __init__(self, path, execution_id): self.Batch_Directory = path self.exexcution_id = execution_id #self.schema_path = 'schema_training.json' self.collection_name = "schema_training" #code added by Avnish yadav self.database_name = "wafer_sys" #code added by Avnish yadav #self.logger = App_Logger() self.logger_db_writer = App_LoggerDB( execution_id=execution_id) #code added by Avnish yadav self.mongdb = MongoDBOperation() self.az_blob_mgt = AzureBlobManagement() self.good_directory_path = "good-raw-file-train-validated" self.bad_directory_path = "bad-raw-file-train-validated" def valuesFromSchema(self): """ Method Name: valuesFromSchema Description: This method extracts all the relevant information from the pre-defined "Schema" file. Output: LengthOfDateStampInFile, LengthOfTimeStampInFile, column_names, Number of Columns On Failure: Raise ValueError,KeyError,Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ try: """code commented by Avnish Yadav with open(self.schema_path, 'r') as f: dic = json.load(f) f.close() """ #code started by Avnish Yadav log_database = "wafer_training_log" log_collection = "values_from_schema_validation" df_schema_training = self.mongdb.getDataFrameofCollection( self.database_name, self.collection_name) dic = {} [ dic.update({i: df_schema_training.loc[0, i]}) for i in df_schema_training.columns ] del df_schema_training #code ended by Avnish Yadav pattern = dic['SampleFileName'] LengthOfDateStampInFile = dic['LengthOfDateStampInFile'] LengthOfTimeStampInFile = dic['LengthOfTimeStampInFile'] column_names = dic['ColName'] NumberofColumns = dic['NumberofColumns'] #file = open("Training_Logs/valuesfromSchemaValidationLog.txt", 'a+') message = "LengthOfDateStampInFile:: %s" % LengthOfDateStampInFile + "\t" + "LengthOfTimeStampInFile:: %s" % LengthOfTimeStampInFile + "\t " + "NumberofColumns:: %s" % NumberofColumns + "\n" #self.logger.log(file,message) code commented by Avnish Yadav self.logger_db_writer.log(log_database, log_collection, message) #file.close() except ValueError: #file = open("Training_Logs/valuesfromSchemaValidationLog.txt", 'a+') #self.logger.log(file,"ValueError:Value not found inside schema_training.json") #file.close() self.logger_db_writer.log( log_database, log_collection, "Error occured in class:Raw_Data_validation method: valuesFromSchema ValueError:Value not found inside collection schema_training" ) raise ValueError except KeyError: #file = open("Training_Logs/valuesfromSchemaValidationLog.txt", 'a+') #self.logger.log(file, "KeyError:Key value error incorrect key passed") #file.close() self.logger_db_writer.log( log_database, log_collection, "Error occured in class:Raw_Data_validation method: valuesFromSchema KeyError:Key value error incorrect key passed" ) raise KeyError except Exception as e: #file = open("Training_Logs/valuesfromSchemaValidationLog.txt", 'a+') #self.logger.log(file, str(e)) #file.close() self.logger_db_writer.log( log_database, log_collection, "Error occured in class:Raw_Data_validation method: valuesFromSchema error" + str(e)) raise e return LengthOfDateStampInFile, LengthOfTimeStampInFile, column_names, NumberofColumns def manualRegexCreation(self): """ Method Name: manualRegexCreation Description: This method contains a manually defined regex based on the "FileName" given in "Schema" file. This Regex is used to validate the filename of the training data. Output: Regex pattern On Failure: None Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ regex = "['wafer']+['\_'']+[\d_]+[\d]+\.csv" return regex def createDirectoryForGoodBadRawData(self): """ Method Name: createDirectoryForGoodBadRawData Description: This method creates directories to store the Good Data and Bad Data after validating the training data. Output: None On Failure: OSError Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ """ try: path = os.path.join("Training_Raw_files_validated/", "Good_Raw/") if not os.path.isdir(path): os.makedirs(path) path = os.path.join("Training_Raw_files_validated/", "Bad_Raw/") if not os.path.isdir(path): os.makedirs(path) except OSError as ex: file = open("Training_Logs/GeneralLog.txt", 'a+') self.logger.log(file,"Error while creating Directory %s:" % ex) file.close() raise OSError """ try: log_database = "wafer_training_log" log_collection = "general_log" self.az_blob_mgt.createDirectory(self.good_directory_path, is_replace=True) self.az_blob_mgt.createDirectory(self.bad_directory_path, is_replace=True) msg = self.good_directory_path + " and " + self.bad_directory_path + " created successfully." self.logger_db_writer.log(log_database, log_collection, msg) except Exception as e: msg = "Error Occured in class Raw_Data_validation method:createDirectoryForGoodBadRawData error: Failed to create directory " + self.good_directory_path + " and " + self.bad_directory_path self.logger_db_writer.log(log_database, log_collection, msg) raise e def deleteExistingGoodDataTrainingFolder(self): """ Method Name: deleteExistingGoodDataTrainingFolder Description: This method deletes the directory made to store the Good Data after loading the data in the table. Once the good files are loaded in the DB,deleting the directory ensures space optimization. Output: None On Failure: OSError Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ try: """ path = 'Training_Raw_files_validated/' # if os.path.isdir("ids/" + userName): # if os.path.isdir(path + 'Bad_Raw/'): # shutil.rmtree(path + 'Bad_Raw/') if os.path.isdir(path + 'Good_Raw/'): shutil.rmtree(path + 'Good_Raw/') file = open("Training_Logs/GeneralLog.txt", 'a+') self.logger.log(file,"GoodRaw directory deleted successfully!!!") file.close() """ log_database = "wafer_training_log" log_collection = "general_log" self.az_blob_mgt.deleteDirectory(self.good_directory_path) self.logger_db_writer.log( log_database, log_collection, self.good_directory_path + " deleted successfully!!") """ except OSError as s: file = open("Training_Logs/GeneralLog.txt", 'a+') self.logger.log(file,"Error while Deleting Directory : %s" %s) file.close() raise OSError """ except Exception as e: msg = "Error Occured in class Raw_Data_validation method:deleteExistingGoodDataTrainingFolder Error occured while deleting :" + self.good_directory_path self.logger_db_writer.log(log_database, log_collection, msg) raise e def deleteExistingBadDataTrainingFolder(self): """ Method Name: deleteExistingBadDataTrainingFolder Description: This method deletes the directory made to store the bad Data. Output: None On Failure: OSError Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ try: """ path = 'Training_Raw_files_validated/' if os.path.isdir(path + 'Bad_Raw/'): shutil.rmtree(path + 'Bad_Raw/') file = open("Training_Logs/GeneralLog.txt", 'a+') self.logger.log(file,"BadRaw directory deleted before starting validation!!!") file.close() except OSError as s: file = open("Training_Logs/GeneralLog.txt", 'a+') self.logger.log(file,"Error while Deleting Directory : %s" %s) file.close() raise OSError""" log_database = "wafer_training_log" log_collection = "general_log" self.az_blob_mgt.deleteDirectory(self.bad_directory_path) self.logger_db_writer.log( log_database, log_collection, self.bad_directory_path + " deleted successfully!!") except Exception as e: msg = "Error Occured in class Raw_Data_validation method:deleteExistingGoodDataTrainingFolder Error occured while deleting :" + self.good_directory_path self.logger_db_writer.log(log_database, log_collection, msg) raise e def moveBadFilesToArchiveBad(self): """ Method Name: moveBadFilesToArchiveBad Description: This method deletes the directory made to store the Bad Data after moving the data in an archive folder. We archive the bad files to send them back to the client for invalid data issue. Output: None On Failure: OSError Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ now = datetime.now() date = now.date() time = now.strftime("%H%M%S") try: log_database = "wafer_training_log" log_collection = "general_log" #source = 'Training_Raw_files_validated/Bad_Raw/' source = self.bad_directory_path destination = "lat-" + self.exexcution_id self.logger_db_writer.log(log_database, log_collection, "Started moving bad raw data..") for file in self.az_blob_mgt.getAllFileNameFromDirectory(source): self.az_blob_mgt.moveFileInDirectory(source, destination, file) self.logger_db_writer.log( log_database, log_collection, "File:" + file + " moved to directory:" + destination + " successfully.") self.logger_db_writer.log( log_database, log_collection, "All bad raw file moved to directory:" + destination) self.az_blob_mgt.deleteDirectory(source) self.logger_db_writer.log(log_database, log_collection, "Deleting bad raw directory:" + source) """ if os.path.isdir(source): path = "TrainingArchiveBadData" if not os.path.isdir(path): os.makedirs(path) dest = 'TrainingArchiveBadData/BadData_' + str(date)+"_"+str(time) if not os.path.isdir(dest): os.makedirs(dest) files = os.listdir(source) for f in files: if f not in os.listdir(dest): shutil.move(source + f, dest) file = open("Training_Logs/GeneralLog.txt", 'a+') self.logger.log(file,"Bad files moved to archive") path = 'Training_Raw_files_validated/' if os.path.isdir(path + 'Bad_Raw/'): shutil.rmtree(path + 'Bad_Raw/') self.logger.log(file,"Bad Raw Data Folder Deleted successfully!!") file.close() """ except Exception as e: """ file = open("Training_Logs/GeneralLog.txt", 'a+') self.logger.log(file, "Error while moving bad files to archive:: %s" % e) file.close() """ self.logger_db_writer.log( log_database, log_collection, "class Raw_Data_validation method:moveBadFilesToArchiveBad Error while moving bad files to archive:" + str(e)) raise e def validationFileNameRaw(self, regex, LengthOfDateStampInFile, LengthOfTimeStampInFile): """ Method Name: validationFileNameRaw Description: This function validates the name of the training csv files as per given name in the schema! Regex pattern is used to do the validation.If name format do not match the file is moved to Bad Raw Data folder else in Good raw data. Output: None On Failure: Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ #pattern = "['Wafer']+['\_'']+[\d_]+[\d]+\.csv" # delete the directories for good and bad data in case last run was unsuccessful and folders were not deleted. """ self.deleteExistingBadDataTrainingFolder() self.deleteExistingGoodDataTrainingFolder() #create new directories """ self.createDirectoryForGoodBadRawData() #onlyfiles = [f for f in listdir(self.Batch_Directory)] onlyfiles = self.az_blob_mgt.getAllFileNameFromDirectory( self.Batch_Directory) try: log_database = "wafer_training_log" log_collection = "name_validation_log" #f = open("Training_Logs/nameValidationLog.txt", 'a+') for filename in onlyfiles: if (re.match(regex, filename)): splitAtDot = re.split('.csv', filename) splitAtDot = (re.split('_', splitAtDot[0])) if len(splitAtDot[1]) == LengthOfDateStampInFile: if len(splitAtDot[2]) == LengthOfTimeStampInFile: """ shutil.copy("Training_Batch_Files/" + filename, "Training_Raw_files_validated/Good_Raw") self.logger.log(f,"Valid File name!! File moved to GoodRaw Folder :: %s" % filename) """ self.az_blob_mgt.copyFileInDirectory( self.Batch_Directory, self.good_directory_path, filename) self.logger_db_writer.log( log_database, log_collection, "Valid File name!! File moved to " + self.good_directory_path + filename) else: """ shutil.copy("Training_Batch_Files/" + filename, "Training_Raw_files_validated/Bad_Raw") self.logger.log(f,"Invalid File Name!! File moved to Bad Raw Folder :: %s" % filename) """ self.az_blob_mgt.copyFileInDirectory( self.Batch_Directory, self.bad_directory_path, filename) msg = "Invalid File Name !! File moved to " + self.bad_directory_path + filename self.logger_db_writer.log(log_database, log_collection, msg) else: """ shutil.copy("Training_Batch_Files/" + filename, "Training_Raw_files_validated/Bad_Raw") self.logger.log(f,"Invalid File Name!! File moved to Bad Raw Folder :: %s" % filename) """ self.az_blob_mgt.copyFileInDirectory( self.Batch_Directory, self.bad_directory_path, filename) msg = "Invalid File Name !! File moved to " + self.bad_directory_path + filename self.logger_db_writer.log(log_database, log_collection, msg) else: """ shutil.copy("Training_Batch_Files/" + filename, "Training_Raw_files_validated/Bad_Raw") self.logger.log(f, "Invalid File Name!! File moved to Bad Raw Folder :: %s" % filename) """ self.az_blob_mgt.copyFileInDirectory( self.Batch_Directory, self.bad_directory_path, filename) msg = "Invalid File Name !! File moved to " + self.bad_directory_path + filename self.logger_db_writer.log(log_database, log_collection, msg) #f.close() except Exception as e: """ f = open("Training_Logs/nameValidationLog.txt", 'a+') self.logger.log(f, "Error occured while validating FileName %s" % e) f.close() """ msg = "Error occured while validating FileName " + str(e) self.logger_db_writer.log(log_database, log_collection, msg) raise e def validateColumnLength(self, NumberofColumns): """ Method Name: validateColumnLength Description: This function validates the number of columns in the csv files. It is should be same as given in the schema file. If not same file is not suitable for processing and thus is moved to Bad Raw Data folder. If the column number matches, file is kept in Good Raw Data for processing. The csv file is missing the first column name, this function changes the missing name to "Wafer". Output: None On Failure: Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ try: log_collection = "column_validation_log" log_database = "wafer_training_log" #f = open("Training_Logs/columnValidationLog.txt", 'a+') #self.logger.log(f,"Column Length Validation Started!!") self.logger_db_writer.log(log_database, log_collection, "Column Length Validation Started!!") #for file in listdir('Training_Raw_files_validated/Good_Raw/'): for file in self.az_blob_mgt.getAllFileNameFromDirectory( self.good_directory_path): #csv = pd.read_csv("Training_Raw_files_validated/Good_Raw/" + file) csv = self.az_blob_mgt.readCsvFileFromDirectory( self.good_directory_path, file) if csv.shape[1] == NumberofColumns: pass else: """ shutil.move("Training_Raw_files_validated/Good_Raw/" + file, "Training_Raw_files_validated/Bad_Raw") self.logger.log(f, "Invalid Column Length for the file!! File moved to Bad Raw Folder :: %s" % file) """ self.az_blob_mgt.moveFileInDirectory( self.good_directory_path, self.bad_directory_path, file) msg = "Invalid Column Length for the file!! File moved to " + self.bad_directory_path + "file:" + file self.logger_db_writer.log(log_database, log_collection, msg) #self.logger.log(f, "Column Length Validation Completed!!") self.logger_db_writer.log(log_database, log_collection, "Column Length Validation Completed!!") """ except OSError: f = open("Training_Logs/columnValidationLog.txt", 'a+') self.logger.log(f, "Error Occured while moving the file :: %s" % OSError) f.close() raise OSError """ except Exception as e: """ f = open("Training_Logs/columnValidationLog.txt", 'a+') self.logger.log(f, "Error Occured:: %s" % e) f.close() """ self.logger_db_writer.log( log_database, log_collection, "Error Occured in class Raw_Data_validation method: validateColumnLength error:" + str(e)) raise e #f.close() def validateMissingValuesInWholeColumn(self): """ Method Name: validateMissingValuesInWholeColumn Description: This function validates if any column in the csv file has all values missing. If all the values are missing, the file is not suitable for processing. SUch files are moved to bad raw data. Output: None On Failure: Exception Written By: iNeuron Intelligence Version: 1.0 Revisions: None """ try: log_database = "wafer_training_log" log_collection = "missing_values_in_column" #f = open("Training_Logs/missingValuesInColumn.txt", 'a+') #self.logger.log(f,"Missing Values Validation Started!!") self.logger_db_writer.log(log_database, log_collection, "Missing Values Validation Started!!") #for file in listdir('Training_Raw_files_validated/Good_Raw/'): for file in self.az_blob_mgt.getAllFileNameFromDirectory( self.good_directory_path): """ csv = pd.read_csv("Training_Raw_files_validated/Good_Raw/" + file) count = 0 """ csv = self.az_blob_mgt.readCsvFileFromDirectory( self.good_directory_path, file, ) count = 0 for columns in csv: if (len(csv[columns]) - csv[columns].count()) == len( csv[columns]): count += 1 """ shutil.move("Training_Raw_files_validated/Good_Raw/" + file, "Training_Raw_files_validated/Bad_Raw") self.logger.log(f,"Invalid Column Length for the file!! File moved to Bad Raw Folder :: %s" % file) """ self.az_blob_mgt.moveFileInDirectory( self.good_directory_path, self.bad_directory_path, file) msg = "Invalid Column Length for the file!! File moved to " + self.bad_directory_path + ":: %s" % file self.logger_db_writer.log(log_database, log_collection, msg) break if count == 0: csv.rename(columns={"Unnamed: 1": "Wafer"}, inplace=True) self.az_blob_mgt.saveDataFrameTocsv( self.good_directory_path, file, csv, index=None, header=True) #csv.to_csv("Training_Raw_files_validated/Good_Raw/" + file, index=None, header=True) """ except OSError: f = open("Training_Logs/missingValuesInColumn.txt", 'a+') self.logger.log(f, "Error Occured while moving the file :: %s" % OSError) f.close() raise OSError """ except Exception as e: #f = open("Training_Logs/missingValuesInColumn.txt", 'a+') #self.logger.log(f, "Error Occured:: %s" % e) #f.close() self.logger_db_writer.log( log_database, log_collection, "Error Occured class:Raw_Data_validation method:validateMissingValuesInWholeColumn error:" + str(e)) raise e
class prediction: def __init__(self, path, execution_id): self.execution_id = execution_id #self.file_object = open("Prediction_Logs/Prediction_Log.txt", 'a+') #self.log_writer = logger.App_Logger() self.log_database = "wafer_prediction_log" self.log_collection = "prediction_log" self.log_db_writer = App_LoggerDB(execution_id) self.az_blob_mgt = AzureBlobManagement() if path is not None: self.pred_data_val = Prediction_Data_validation(path, execution_id) def predictionFromModel(self): try: self.pred_data_val.deletePredictionFile( ) #deletes the existing prediction file from last run! self.log_db_writer.log(self.log_database, self.log_collection, 'Start of Prediction') data_getter = data_loader_prediction.Data_Getter_Pred( self.log_database, self.log_collection, self.execution_id) data = data_getter.get_data() path = "" if data.__len__() == 0: self.log_db_writer.log( self.log_database, self.log_collection, "No data was present to perform prediction existing prediction method" ) return path, "No data was present to perform prediction" #code change # wafer_names=data['Wafer'] # data=data.drop(labels=['Wafer'],axis=1) preprocessor = preprocessing.Preprocessor(self.log_database, self.log_collection, self.execution_id) is_null_present = preprocessor.is_null_present(data) if (is_null_present): data = preprocessor.impute_missing_values(data) cols_to_drop = preprocessor.get_columns_with_zero_std_deviation( data) data = preprocessor.remove_columns(data, cols_to_drop) #data=data.to_numpy() file_loader = file_methods.File_Operation(self.log_database, self.log_collection, self.execution_id) kmeans = file_loader.load_model('KMeans') #print(kmeans) ##Code changed pred_data = data.drop(['Wafer'], axis=1) clusters = kmeans.predict( pred_data) #drops the first column for cluster prediction data['clusters'] = clusters clust = data['clusters'].unique() for i in clust: cluster_data = data[ data['clusters'] == i] # filteing of data with clusters no 0,1,2,etc. wafer_names = list(cluster_data['Wafer']) cluster_data = data.drop(labels=['Wafer'], axis=1) cluster_data = cluster_data.drop(['clusters'], axis=1) model_name = file_loader.find_correct_model_file(i) model = file_loader.load_model(model_name) result = list(model.predict(cluster_data)) self.result = pandas.DataFrame(list(zip(wafer_names, result)), columns=['Wafer', 'Prediction']) print(self.result.shape) print(self.result) #path="Prediction_Output_File/Predictions.csv" path = "prediction-output-file" self.az_blob_mgt.saveDataFrametoCSV(path, "prediction.csv", self.result, header=True, mode="a+") #result.to_csv("Prediction_Output_File/Predictions.csv",header=True,mode='a+') #appends result to prediction file #self.log_writer.log(self.file_object,'End of Prediction') self.log_db_writer.log(self.log_database, self.log_collection, 'End of prediction') except Exception as ex: #self.log_writer.log(self.file_object, 'Error occured while running the prediction!! Error:: %s' % ex) self.log_db_writer.log( self.log_database, self.log_collection, 'Error occured while running the prediction!! Error:: %s' % ex) raise ex return path, self.result.head().to_json(orient="records")