Exemple #1
0
    def __init__(self,
                 in_channels,
                 out_channels,
                 strides,
                 padding=1,
                 dilation=1,
                 conv1_stride=False,
                 bottleneck_factor=4,
                 data_format="channels_last",
                 **kwargs):
        super(ResBottleneck, self).__init__(**kwargs)
        mid_channels = out_channels // bottleneck_factor

        self.conv1 = conv1x1_block(in_channels=in_channels,
                                   out_channels=mid_channels,
                                   strides=(strides if conv1_stride else 1),
                                   data_format=data_format,
                                   name="conv1")
        self.conv2 = conv3x3_block(in_channels=mid_channels,
                                   out_channels=mid_channels,
                                   strides=(1 if conv1_stride else strides),
                                   padding=padding,
                                   dilation=dilation,
                                   data_format=data_format,
                                   name="conv2")
        self.conv3 = conv1x1_block(in_channels=mid_channels,
                                   out_channels=out_channels,
                                   activation=None,
                                   data_format=data_format,
                                   name="conv3")
Exemple #2
0
    def __init__(self,
                 in_channels,
                 out_channels,
                 strides,
                 bottleneck_factor=4,
                 data_format="channels_last",
                 **kwargs):
        super(ResNeStABottleneck, self).__init__(**kwargs)
        self.resize = (strides > 1)
        mid_channels = out_channels // bottleneck_factor

        self.conv1 = conv1x1_block(in_channels=in_channels,
                                   out_channels=mid_channels,
                                   data_format=data_format,
                                   name="conv1")
        self.conv2 = saconv3x3_block(in_channels=mid_channels,
                                     out_channels=mid_channels,
                                     data_format=data_format,
                                     name="conv2")
        if self.resize:
            self.pool = AvgPool2d(pool_size=3,
                                  strides=strides,
                                  padding=1,
                                  data_format=data_format,
                                  name="pool")
        self.conv3 = conv1x1_block(in_channels=mid_channels,
                                   out_channels=out_channels,
                                   activation=None,
                                   data_format=data_format,
                                   name="conv3")
Exemple #3
0
    def __init__(self,
                 in_channels,
                 out_channels,
                 strides,
                 cardinality,
                 bottleneck_width,
                 data_format="channels_last",
                 **kwargs):
        super(SENetBottleneck, self).__init__(**kwargs)
        mid_channels = out_channels // 4
        D = int(math.floor(mid_channels * (bottleneck_width / 64.0)))
        group_width = cardinality * D
        group_width2 = group_width // 2

        self.conv1 = conv1x1_block(in_channels=in_channels,
                                   out_channels=group_width2,
                                   data_format=data_format,
                                   name="conv1")
        self.conv2 = conv3x3_block(in_channels=group_width2,
                                   out_channels=group_width,
                                   strides=strides,
                                   groups=cardinality,
                                   data_format=data_format,
                                   name="conv2")
        self.conv3 = conv1x1_block(in_channels=group_width,
                                   out_channels=out_channels,
                                   activation=None,
                                   data_format=data_format,
                                   name="conv3")
Exemple #4
0
    def __init__(self,
                 in_channels,
                 out_channels,
                 strides,
                 conv1_ibn,
                 data_format="channels_last",
                 **kwargs):
        super(IBNResBottleneck, self).__init__(**kwargs)
        mid_channels = out_channels // 4

        self.conv1 = ibn_conv1x1_block(in_channels=in_channels,
                                       out_channels=mid_channels,
                                       use_ibn=conv1_ibn,
                                       data_format=data_format,
                                       name="conv1")
        self.conv2 = conv3x3_block(in_channels=mid_channels,
                                   out_channels=mid_channels,
                                   strides=strides,
                                   data_format=data_format,
                                   name="conv2")
        self.conv3 = conv1x1_block(in_channels=mid_channels,
                                   out_channels=out_channels,
                                   activation=None,
                                   data_format=data_format,
                                   name="conv3")
Exemple #5
0
 def __init__(self,
              in_channels,
              out_channels,
              strides,
              data_format="channels_last",
              **kwargs):
     super(ResNeStADownBlock, self).__init__(**kwargs)
     self.pool = AvgPool2d(pool_size=strides,
                           strides=strides,
                           ceil_mode=True,
                           data_format=data_format,
                           name="pool")
     self.conv = conv1x1_block(in_channels=in_channels,
                               out_channels=out_channels,
                               activation=None,
                               data_format=data_format,
                               name="conv")
Exemple #6
0
    def __init__(self,
                 in_channels,
                 out_channels,
                 strides,
                 padding=1,
                 dilation=1,
                 use_bias=False,
                 use_bn=True,
                 bottleneck=True,
                 conv1_stride=False,
                 data_format="channels_last",
                 **kwargs):
        super(ResUnit, self).__init__(**kwargs)
        self.resize_identity = (in_channels != out_channels) or (strides != 1)

        if bottleneck:
            self.body = ResBottleneck(in_channels=in_channels,
                                      out_channels=out_channels,
                                      strides=strides,
                                      padding=padding,
                                      dilation=dilation,
                                      conv1_stride=conv1_stride,
                                      data_format=data_format,
                                      name="body")
        else:
            self.body = ResBlock(in_channels=in_channels,
                                 out_channels=out_channels,
                                 strides=strides,
                                 use_bias=use_bias,
                                 use_bn=use_bn,
                                 data_format=data_format,
                                 name="body")
        if self.resize_identity:
            self.identity_conv = conv1x1_block(in_channels=in_channels,
                                               out_channels=out_channels,
                                               strides=strides,
                                               use_bias=use_bias,
                                               use_bn=use_bn,
                                               activation=None,
                                               data_format=data_format,
                                               name="identity_conv")
        self.activ = nn.ReLU()
Exemple #7
0
    def __init__(self,
                 in_channels,
                 out_channels,
                 strides,
                 cardinality,
                 bottleneck_width,
                 identity_conv3x3,
                 data_format="channels_last",
                 **kwargs):
        super(SENetUnit, self).__init__(**kwargs)
        self.resize_identity = (in_channels != out_channels) or (strides != 1)

        self.body = SENetBottleneck(in_channels=in_channels,
                                    out_channels=out_channels,
                                    strides=strides,
                                    cardinality=cardinality,
                                    bottleneck_width=bottleneck_width,
                                    data_format=data_format,
                                    name="body")
        self.se = SEBlock(channels=out_channels,
                          data_format=data_format,
                          name="se")
        if self.resize_identity:
            if identity_conv3x3:
                self.identity_conv = conv3x3_block(in_channels=in_channels,
                                                   out_channels=out_channels,
                                                   strides=strides,
                                                   activation=None,
                                                   data_format=data_format,
                                                   name="identity_conv")
            else:
                self.identity_conv = conv1x1_block(in_channels=in_channels,
                                                   out_channels=out_channels,
                                                   strides=strides,
                                                   activation=None,
                                                   data_format=data_format,
                                                   name="identity_conv")
        self.activ = nn.ReLU()
Exemple #8
0
    def __init__(self,
                 in_channels,
                 out_channels,
                 strides,
                 conv1_ibn,
                 data_format="channels_last",
                 **kwargs):
        super(IBNResUnit, self).__init__(**kwargs)
        self.resize_identity = (in_channels != out_channels) or (strides != 1)

        self.body = IBNResBottleneck(in_channels=in_channels,
                                     out_channels=out_channels,
                                     strides=strides,
                                     conv1_ibn=conv1_ibn,
                                     data_format=data_format,
                                     name="body")
        if self.resize_identity:
            self.identity_conv = conv1x1_block(in_channels=in_channels,
                                               out_channels=out_channels,
                                               strides=strides,
                                               activation=None,
                                               data_format=data_format,
                                               name="identity_conv")
        self.activ = nn.ReLU()