Exemple #1
0
def run(args):
    print(f"Arguments in args:\n{pprint.pformat(vars(args))}", flush=True)

    aligner = CtcAligner(args.am,
                         cpt_tag=args.am_tag,
                         device_id=args.device_id)
    if aligner.accept_raw:
        src_reader = AudioReader(args.feats_or_wav_scp,
                                 sr=args.sr,
                                 channel=args.channel)
    else:
        src_reader = ScriptReader(args.feats_or_wav_scp)
        if args.word_boundary:
            raise RuntimeError(
                "Now can't generate word boundary when using Kaldi's feature")

    txt_reader = Reader(args.text, num_tokens=-1, restrict=False)
    processor = TextPreProcessor(args.dict, space=args.space, spm=args.spm)

    ali_stdout, ali_fd = io_wrapper(args.alignment, "w")

    wdb_stdout, wdb_fd = False, None
    if args.word_boundary:
        wdb_stdout, wdb_fd = io_wrapper(args.word_boundary, "w")
    done = 0
    tot_utts = len(src_reader)
    timer = SimpleTimer()
    for key, str_seq in txt_reader:
        done += 1
        logger.info(
            f"Generate alignment for utterance {key} ({done}/{tot_utts}) ...")
        int_seq = processor.run(str_seq)
        wav_or_feats = src_reader[key]
        ali = aligner.run(wav_or_feats, int_seq)
        header = f"{ali['score']:.3f}, {len(ali['align_seq'])}"
        ali_fd.write(f"{key} {ali['align_str']}\n")
        logger.info(f"{key} ({header}) {ali['align_str']}")
        if wdb_fd:
            dur = wav_or_feats.shape[-1] * 1.0 / args.sr
            wdb = gen_word_boundary(key, dur, ali["align_str"])
            wdb_fd.write("\n".join(wdb) + "\n")
    if not ali_stdout:
        ali_fd.close()
    if wdb_fd and not wdb_stdout:
        wdb_fd.close()
    cost = timer.elapsed()
    logger.info(f"Generate alignments for {tot_utts} utterance done, " +
                f"time cost = {cost:.2f}m")
Exemple #2
0
def run(args):
    nbest, nbest_hypos = read_nbest(args.nbest)
    ngram = kenlm.LanguageModel(args.lm)

    stdout, top1 = io_wrapper(args.top1, "w")
    for key, nbest_dict in nbest_hypos.items():
        rescore = []
        for hyp in nbest_dict:
            am_score, num_tokens, trans = hyp
            lm_score = ngram.score(trans, bos=True, eos=True)
            if args.len_norm:
                am_score /= num_tokens
            score = am_score + args.lm_weight * lm_score
            rescore.append((score, trans))
        rescore = sorted(rescore, key=lambda n: n[0], reverse=True)
        top1.write(f"{key}\t{rescore[0][1]}\n")
    if not stdout:
        top1.close()
    logger.info(f"Rescore {len(nbest_hypos)} utterances on {nbest} hypos")
Exemple #3
0
def run(args):
    print(f"Arguments in args:\n{pprint.pformat(vars(args))}", flush=True)
    if args.batch_size == 1:
        warnings.warn("can use decode.py instead as batch_size == 1")
    decoder = BatchDecoder(args.am,
                           device_id=args.device_id,
                           cpt_tag=args.am_tag)
    if decoder.accept_raw:
        src_reader = AudioReader(args.feats_or_wav_scp,
                                 sr=args.sr,
                                 channel=args.channel)
    else:
        src_reader = ScriptReader(args.feats_or_wav_scp)

    if args.lm:
        if Path(args.lm).is_file():
            from aps.asr.lm.ngram import NgramLM
            lm = NgramLM(args.lm, args.dict)
            logger.info(
                f"Load ngram LM from {args.lm}, weight = {args.lm_weight}")
        else:
            lm = NnetEvaluator(args.lm,
                               device_id=args.device_id,
                               cpt_tag=args.lm_tag)
            logger.info(f"Load RNN LM from {args.lm}: epoch {lm.epoch}, " +
                        f"weight = {args.lm_weight}")
            lm = lm.nnet
    else:
        lm = None

    processor = TextPostProcessor(args.dict,
                                  space=args.space,
                                  show_unk=args.show_unk,
                                  spm=args.spm)
    stdout_top1, top1 = io_wrapper(args.best, "w")
    topn = None
    if args.dump_nbest:
        stdout_topn, topn = io_wrapper(args.dump_nbest, "w")
        nbest = min(args.beam_size, args.nbest)
        topn.write(f"{nbest}\n")
    ali_dir = args.dump_align
    if ali_dir:
        Path(ali_dir).mkdir(exist_ok=True, parents=True)
        logger.info(f"Dump alignments to dir: {ali_dir}")
    done = 0
    timer = SimpleTimer()
    batches = []
    dec_args = dict(
        filter(lambda x: x[0] in beam_search_params,
               vars(args).items()))
    dec_args["lm"] = lm
    tot_utts = len(src_reader)
    for key, src in src_reader:
        done += 1
        batches.append({
            "key": key,
            "inp": src,
            "len": src.shape[-1] if decoder.accept_raw else src.shape[0]
        })
        end = (done == len(src_reader) and len(batches))
        if len(batches) != args.batch_size and not end:
            continue
        # decode
        batches = sorted(batches, key=lambda b: b["len"], reverse=True)
        batch_nbest = decoder.run([bz["inp"] for bz in batches], **dec_args)
        keys = [bz["key"] for bz in batches]
        for key, nbest in zip(keys, batch_nbest):
            logger.info(f"Decoding utterance {key} ({done}/{tot_utts}) ...")
            nbest_hypos = [f"{key}\n"]
            for idx, hyp in enumerate(nbest):
                # remove SOS/EOS
                token = hyp["trans"][1:-1]
                trans = processor.run(token)
                score = hyp["score"]
                nbest_hypos.append(f"{score:.3f}\t{len(token):d}\t{trans}\n")
                if idx == 0:
                    logger.info(f"{key} ({score:.3f}, {len(token):d}) {trans}")
                    top1.write(f"{key}\t{trans}\n")
                if ali_dir:
                    if hyp["align"] is None:
                        raise RuntimeError(
                            "Can not dump alignment out as it's None")
                    np.save(f"{ali_dir}/{key}-nbest{idx+1}",
                            hyp["align"].numpy())
            if topn:
                topn.write("".join(nbest_hypos))
        top1.flush()
        if topn:
            topn.flush()
        batches.clear()

    if not stdout_top1:
        top1.close()
    if topn and not stdout_topn:
        topn.close()
    cost = timer.elapsed()
    logger.info(f"Decode {tot_utts} utterance done, time cost = {cost:.2f}m")
Exemple #4
0
def run(args):
    print(f"Arguments in args:\n{pprint.pformat(vars(args))}", flush=True)

    decoder = FasterDecoder(args.am,
                            cpt_tag=args.am_tag,
                            function=args.function,
                            device_id=args.device_id)
    if decoder.accept_raw:
        src_reader = AudioReader(args.feats_or_wav_scp,
                                 sr=args.sr,
                                 channel=args.channel)
    else:
        src_reader = ScriptReader(args.feats_or_wav_scp)

    if args.lm:
        if Path(args.lm).is_file():
            from aps.asr.lm.ngram import NgramLM
            lm = NgramLM(args.lm, args.dict)
            logger.info(
                f"Load ngram LM from {args.lm}, weight = {args.lm_weight}")
        else:
            lm = NnetEvaluator(args.lm,
                               device_id=args.device_id,
                               cpt_tag=args.lm_tag)
            logger.info(f"Load RNN LM from {args.lm}: epoch {lm.epoch}, " +
                        f"weight = {args.lm_weight}")
            lm = lm.nnet
    else:
        lm = None

    processor = TextPostProcessor(args.dict,
                                  space=args.space,
                                  show_unk=args.show_unk,
                                  spm=args.spm)
    stdout_top1, top1 = io_wrapper(args.best, "w")
    topn = None
    if args.dump_nbest:
        stdout_topn, topn = io_wrapper(args.dump_nbest, "w")
        if args.function == "greedy_search":
            nbest = min(args.beam_size, args.nbest)
        else:
            nbest = 1
        topn.write(f"{nbest}\n")
    ali_dir = args.dump_align
    if ali_dir:
        Path(ali_dir).mkdir(exist_ok=True, parents=True)
        logger.info(f"Dump alignments to dir: {ali_dir}")
    N = 0
    timer = SimpleTimer()
    dec_args = dict(
        filter(lambda x: x[0] in beam_search_params,
               vars(args).items()))
    dec_args["lm"] = lm
    for key, src in src_reader:
        logger.info(f"Decoding utterance {key}...")
        nbest_hypos = decoder.run(src, **dec_args)
        nbest = [f"{key}\n"]
        for idx, hyp in enumerate(nbest_hypos):
            # remove SOS/EOS
            token = hyp["trans"][1:-1]
            trans = processor.run(token)
            score = hyp["score"]
            nbest.append(f"{score:.3f}\t{len(token):d}\t{trans}\n")
            if idx == 0:
                top1.write(f"{key}\t{trans}\n")
            if ali_dir:
                if hyp["align"] is None:
                    raise RuntimeError(
                        "Can not dump alignment out as it's None")
                np.save(f"{ali_dir}/{key}-nbest{idx+1}", hyp["align"].numpy())
        if topn:
            topn.write("".join(nbest))
        if not (N + 1) % 10:
            top1.flush()
            if topn:
                topn.flush()
        N += 1
    if not stdout_top1:
        top1.close()
    if topn and not stdout_topn:
        topn.close()
    cost = timer.elapsed()
    logger.info(
        f"Decode {len(src_reader)} utterance done, time cost = {cost:.2f}m")