Exemple #1
0
def run(args):
    # set random seed
    seed = set_seed(args.seed)
    if seed is not None:
        print(f"Set random seed as {seed}")

    conf, vocab = load_am_conf(args.conf, args.dict)

    print(f"Arguments in args:\n{pprint.pformat(vars(args))}", flush=True)
    print(f"Arguments in yaml:\n{pprint.pformat(conf)}", flush=True)

    asr_cls = aps_asr_nnet(conf["nnet"])
    asr_transform = None
    enh_transform = None
    if "asr_transform" in conf:
        asr_transform = aps_transform("asr")(**conf["asr_transform"])
    if "enh_transform" in conf:
        enh_transform = aps_transform("enh")(**conf["enh_transform"])

    if enh_transform:
        nnet = asr_cls(enh_transform=enh_transform,
                       asr_transform=asr_transform,
                       **conf["nnet_conf"])
    elif asr_transform:
        nnet = asr_cls(asr_transform=asr_transform, **conf["nnet_conf"])
    else:
        nnet = asr_cls(**conf["nnet_conf"])

    task = aps_task(conf["task"], nnet, **conf["task_conf"])
    train_worker(task, conf, vocab, args)
Exemple #2
0
def run(args):
    _ = set_seed(args.seed)
    conf, vocab = load_am_conf(args.conf, args.dict)

    print(f"Arguments in args:\n{pprint.pformat(vars(args))}", flush=True)
    print(f"Arguments in yaml:\n{pprint.pformat(conf)}", flush=True)

    asr_cls = aps_asr_nnet(conf["nnet"])
    asr_transform = None
    enh_transform = None
    if "asr_transform" in conf:
        asr_transform = aps_transform("asr")(**conf["asr_transform"])
    if "enh_transform" in conf:
        enh_transform = aps_transform("enh")(**conf["enh_transform"])

    if enh_transform:
        nnet = asr_cls(enh_transform=enh_transform,
                       asr_transform=asr_transform,
                       **conf["nnet_conf"])
    elif asr_transform:
        nnet = asr_cls(asr_transform=asr_transform, **conf["nnet_conf"])
    else:
        nnet = asr_cls(**conf["nnet_conf"])

    other_loader_conf = {
        "vocab_dict": vocab,
    }
    start_trainer(args.trainer,
                  conf,
                  nnet,
                  args,
                  reduction_tag="#tok",
                  other_loader_conf=other_loader_conf)
    dump_dict(f"{args.checkpoint}/dict", vocab, reverse=False)
Exemple #3
0
def run(args):
    # set random seed
    seed = set_seed(args.seed)
    if seed is not None:
        print(f"Set random seed as {seed}")

    conf, vocab_dict = load_am_conf(args.conf, args.dict)
    print(f"Arguments in args:\n{pprint.pformat(vars(args))}", flush=True)
    print(f"Arguments in yaml:\n{pprint.pformat(conf)}", flush=True)
    data_conf = conf["data_conf"]
    load_conf = {
        "fmt": data_conf["fmt"],
        "vocab_dict": vocab_dict,
        "num_workers": args.num_workers,
        "max_batch_size": args.batch_size
    }
    load_conf.update(data_conf["loader"])
    trn_loader = aps_dataloader(train=True, **data_conf["train"], **load_conf)
    dev_loader = aps_dataloader(train=False, **data_conf["valid"], **load_conf)

    asr_cls = aps_asr_nnet(conf["nnet"])
    asr_transform = None
    enh_transform = None
    if "asr_transform" in conf:
        asr_transform = aps_transform("asr")(**conf["asr_transform"])
    if "enh_transform" in conf:
        enh_transform = aps_transform("enh")(**conf["enh_transform"])

    if enh_transform:
        nnet = asr_cls(enh_transform=enh_transform,
                       asr_transform=asr_transform,
                       **conf["nnet_conf"])
    elif asr_transform:
        nnet = asr_cls(asr_transform=asr_transform, **conf["nnet_conf"])
    else:
        nnet = asr_cls(**conf["nnet_conf"])

    task = aps_task(conf["task"], nnet, **conf["task_conf"])
    Trainer = aps_trainer(args.trainer, distributed=False)
    trainer = Trainer(task,
                      device_ids=args.device_id,
                      checkpoint=args.checkpoint,
                      resume=args.resume,
                      init=args.init,
                      save_interval=args.save_interval,
                      prog_interval=args.prog_interval,
                      tensorboard=args.tensorboard,
                      reduction_tag="#tok",
                      **conf["trainer_conf"])
    # dump yaml configurations
    conf["cmd_args"] = vars(args)
    with open(f"{args.checkpoint}/train.yaml", "w") as f:
        yaml.dump(conf, f)
    # dump dict
    dump_dict(f"{args.checkpoint}/dict", vocab_dict, reverse=False)

    trainer.run(trn_loader,
                dev_loader,
                num_epochs=args.epochs,
                eval_interval=args.eval_interval)
Exemple #4
0
def run(args):
    _ = set_seed(args.seed)
    conf = load_ss_conf(args.conf)

    _ = set_seed(args.seed)
    print(f"Arguments in args:\n{pprint.pformat(vars(args))}", flush=True)
    print(f"Arguments in yaml:\n{pprint.pformat(conf)}", flush=True)

    sse_cls = aps_sse_nnet(conf["nnet"])
    # with or without enh_tranform
    if "enh_transform" in conf:
        enh_transform = aps_transform("enh")(**conf["enh_transform"])
        nnet = sse_cls(enh_transform=enh_transform, **conf["nnet_conf"])
    else:
        nnet = sse_cls(**conf["nnet_conf"])

    is_distributed = args.distributed != "none"
    if is_distributed and args.eval_interval <= 0:
        raise RuntimeError("For distributed training of SE/SS model, "
                           "--eval-interval must be larger than 0")
    start_trainer(args.trainer, conf, nnet, args, reduction_tag="none")
Exemple #5
0
def run(args):
    # set random seed
    seed = set_seed(args.seed)
    if seed is not None:
        print(f"Set random seed as {seed}")

    conf, vocab = load_lm_conf(args.conf, args.dict)
    print(f"Arguments in args:\n{pprint.pformat(vars(args))}", flush=True)
    print(f"Arguments in yaml:\n{pprint.pformat(conf)}", flush=True)

    nnet = aps_asr_nnet(conf["nnet"])(**conf["nnet_conf"])
    task = aps_task(conf["task"], nnet, **conf["task_conf"])

    train_worker(task, conf, vocab, args)
Exemple #6
0
def run(args):
    # set random seed
    seed = set_seed(args.seed)
    if seed is not None:
        print(f"Set random seed as {seed}")

    conf = load_ss_conf(args.conf)
    print(f"Arguments in args:\n{pprint.pformat(vars(args))}", flush=True)
    print(f"Arguments in yaml:\n{pprint.pformat(conf)}", flush=True)

    data_conf = conf["data_conf"]
    load_conf = {
        "fmt": data_conf["fmt"],
        "batch_size": args.batch_size,
        "num_workers": args.num_workers,
    }
    load_conf.update(data_conf["loader"])
    trn_loader = aps_dataloader(train=True, **load_conf, **data_conf["train"])
    dev_loader = aps_dataloader(train=False, **load_conf, **data_conf["valid"])

    sse_cls = aps_sse_nnet(conf["nnet"])
    if "enh_transform" in conf:
        enh_transform = aps_transform("enh")(**conf["enh_transform"])
        nnet = sse_cls(enh_transform=enh_transform, **conf["nnet_conf"])
    else:
        nnet = sse_cls(**conf["nnet_conf"])

    task = aps_task(conf["task"], nnet, **conf["task_conf"])

    Trainer = aps_trainer(args.trainer, distributed=False)
    trainer = Trainer(task,
                      device_ids=args.device_id,
                      checkpoint=args.checkpoint,
                      resume=args.resume,
                      init=args.init,
                      save_interval=args.save_interval,
                      prog_interval=args.prog_interval,
                      tensorboard=args.tensorboard,
                      **conf["trainer_conf"])

    # dump configurations
    conf["cmd_args"] = vars(args)
    with open(f"{args.checkpoint}/train.yaml", "w") as f:
        yaml.dump(conf, f)

    trainer.run(trn_loader,
                dev_loader,
                num_epochs=args.epochs,
                eval_interval=args.eval_interval)
Exemple #7
0
def run(args):
    # set random seed
    seed = set_seed(args.seed)
    if seed is not None:
        print(f"Set random seed as {seed}")

    conf, vocab = load_lm_conf(args.conf, args.dict)
    print(f"Arguments in args:\n{pprint.pformat(vars(args))}", flush=True)
    print(f"Arguments in yaml:\n{pprint.pformat(conf)}", flush=True)

    data_conf = conf["data_conf"]
    load_conf = {
        "vocab_dict": vocab,
        "num_workers": args.num_workers,
        "sos": vocab["<sos>"],
        "eos": vocab["<eos>"],
        "fmt": data_conf["fmt"],
        "max_batch_size": args.batch_size
    }
    load_conf.update(data_conf["loader"])
    trn_loader = aps_dataloader(train=True, **data_conf["train"], **load_conf)
    dev_loader = aps_dataloader(train=False, **data_conf["valid"], **load_conf)

    nnet = aps_asr_nnet(conf["nnet"])(**conf["nnet_conf"])
    task = aps_task(conf["task"], nnet, **conf["task_conf"])

    Trainer = aps_trainer(args.trainer, distributed=False)
    trainer = Trainer(task,
                      device_ids=args.device_id,
                      checkpoint=args.checkpoint,
                      resume=args.resume,
                      save_interval=args.save_interval,
                      prog_interval=args.prog_interval,
                      tensorboard=args.tensorboard,
                      reduction_tag="#tok",
                      **conf["trainer_conf"])
    # dump configurations
    conf["cmd_args"] = vars(args)
    with open(f"{args.checkpoint}/train.yaml", "w") as f:
        yaml.dump(conf, f)

    trainer.run(trn_loader,
                dev_loader,
                num_epochs=args.epochs,
                eval_interval=args.eval_interval)
Exemple #8
0
def run(args):
    # set random seed
    seed = set_seed(args.seed)
    if seed is not None:
        print(f"Set random seed as {seed}")

    conf = load_ss_conf(args.conf)
    print(f"Arguments in args:\n{pprint.pformat(vars(args))}", flush=True)
    print(f"Arguments in yaml:\n{pprint.pformat(conf)}", flush=True)

    sse_cls = aps_sse_nnet(conf["nnet"])
    # with or without enh_tranform
    if "enh_transform" in conf:
        enh_transform = aps_transform("enh")(**conf["enh_transform"])
        nnet = sse_cls(enh_transform=enh_transform, **conf["nnet_conf"])
    else:
        nnet = sse_cls(**conf["nnet_conf"])

    task = aps_task(conf["task"], nnet, **conf["task_conf"])
    train_worker(task, conf, args)
Exemple #9
0
def run(args):
    _ = set_seed(args.seed)
    conf, vocab = load_lm_conf(args.conf, args.dict)

    print(f"Arguments in args:\n{pprint.pformat(vars(args))}", flush=True)
    print(f"Arguments in yaml:\n{pprint.pformat(conf)}", flush=True)

    nnet = aps_asr_nnet(conf["nnet"])(**conf["nnet_conf"])

    other_loader_conf = {
        "vocab_dict": vocab,
        "sos": vocab["<sos>"],
        "eos": vocab["<eos>"],
    }
    start_trainer(args.trainer,
                  conf,
                  nnet,
                  args,
                  reduction_tag="#tok",
                  other_loader_conf=other_loader_conf)
    dump_dict(f"{args.checkpoint}/dict", vocab, reverse=False)