def make_cable_cell(gid): b = arbor.flat_cell_builder() # Soma with radius 6 μm. s = b.add_sphere(6, "soma") # Single dendrite of length 100 μm and radius 2 μm attached to soma. b1 = b.add_cable(parent=s, length=100, radius=2, name="dend", ncomp=1) # Attach two dendrites of length 50 μm to the end of the first dendrite. # Radius tapers from 2 to 0.5 μm over the length of the dendrite. b2 = b.add_cable(parent=b1, length=50, radius=(2,0.5), name="dend", ncomp=1) # Constant radius of 1 μm over the length of the dendrite. b3 = b.add_cable(parent=b1, length=50, radius=1, name="dend", ncomp=1) # Mark location for synapse at the midpoint of branch 1 (the first dendrite). b.add_label('synapse_site', '(location 1 0.5)') # Mark the root of the tree. b.add_label('root', '(root)') cell = b.build() # Put hh dynamics on soma, and passive properties on the dendrites. cell.paint('soma', 'hh') cell.paint('dend', 'pas') # Attach a single synapse. cell.place('synapse_site', 'expsyn') # Attach a spike detector with threshold of -10 mV. cell.place('root', arbor.spike_detector(-10)) return cell
def cell_description(self, gid): tree = arbor.segment_tree() tree.append(arbor.mnpos, arbor.mpoint(-3, 0, 0, 3), arbor.mpoint(3, 0, 0, 3), tag=1) labels = arbor.label_dict({ 'soma': '(tag 1)', 'center': '(location 0 0.5)' }) decor = arbor.decor() decor.set_property(Vm=-40) decor.paint('(all)', arbor.density('hh')) decor.place('"center"', arbor.spike_detector(-10), "detector") decor.place('"center"', arbor.synapse('expsyn'), "synapse") mech = arbor.mechanism('expsyn_stdp') mech.set("max_weight", 1.) syn = arbor.synapse(mech) decor.place('"center"', syn, "stpd_synapse") cell = arbor.cable_cell(tree, labels, decor) return cell
def make_cable_cell(gid): # (1) Build a segment tree tree = arbor.segment_tree() # Soma (tag=1) with radius 6 μm, modelled as cylinder of length 2*radius s = tree.append(arbor.mnpos, arbor.mpoint(-12, 0, 0, 6), arbor.mpoint(0, 0, 0, 6), tag=1) # Single dendrite (tag=3) of length 50 μm and radius 2 μm attached to soma. b0 = tree.append(s, arbor.mpoint(0, 0, 0, 2), arbor.mpoint(50, 0, 0, 2), tag=3) # Attach two dendrites (tag=3) of length 50 μm to the end of the first dendrite. # Radius tapers from 2 to 0.5 μm over the length of the dendrite. b1 = tree.append(b0, arbor.mpoint(50, 0, 0, 2), arbor.mpoint(50 + 50 / sqrt(2), 50 / sqrt(2), 0, 0.5), tag=3) # Constant radius of 1 μm over the length of the dendrite. b2 = tree.append(b0, arbor.mpoint(50, 0, 0, 1), arbor.mpoint(50 + 50 / sqrt(2), -50 / sqrt(2), 0, 1), tag=3) # Associate labels to tags labels = arbor.label_dict() labels['soma'] = '(tag 1)' labels['dend'] = '(tag 3)' # (2) Mark location for synapse at the midpoint of branch 1 (the first dendrite). labels['synapse_site'] = '(location 1 0.5)' labels['synapse_site2'] = '(location 1 0.5)' # Mark the root of the tree. labels['root'] = '(root)' # (3) Create a decor and a cable_cell decor = arbor.decor() # Put hh dynamics on soma, and passive properties on the dendrites. decor.paint('"soma"', 'hh') decor.paint('"dend"', 'pas') # (4) Attach a single synapse. decor.place('"synapse_site"', 'expsyn') decor.place('"synapse_site2"', 'expsyn') # Attach a spike detector with threshold of -10 mV. decor.place('"root"', arbor.spike_detector(-10)) cell = arbor.cable_cell(tree, labels, decor) return cell
def make_cable_cell(gid): # Build a segment tree tree = arbor.segment_tree() # Soma with radius 5 μm and length 2 * radius = 10 μm, (tag = 1) s = tree.append(arbor.mnpos, arbor.mpoint(-10, 0, 0, 5), arbor.mpoint(0, 0, 0, 5), tag=1) # Single dendrite with radius 2 μm and length 40 μm, (tag = 2) b = tree.append(s, arbor.mpoint(0, 0, 0, 2), arbor.mpoint(40, 0, 0, 2), tag=2) # Label dictionary for cell components labels = arbor.label_dict() labels['soma'] = '(tag 1)' labels['dend'] = '(tag 2)' # Mark location for synapse site at midpoint of dendrite (branch 0 = soma + dendrite) labels['synapse_site'] = '(location 0 0.6)' # Gap junction site at connection point of soma and dendrite labels['gj_site'] = '(location 0 0.2)' # Label root of the tree labels['root'] = '(root)' # Paint dynamics onto the cell, hh on soma and passive properties on dendrite decor = arbor.decor() decor.paint('"soma"', arbor.density("hh")) decor.paint('"dend"', arbor.density("pas")) # Attach one synapse and gap junction each on their labeled sites decor.place('"synapse_site"', arbor.synapse('expsyn'), 'syn') decor.place('"gj_site"', arbor.junction('gj'), 'gj') # Attach spike detector to cell root decor.place('"root"', arbor.spike_detector(-10), 'detector') cell = arbor.cable_cell(tree, labels, decor) return cell
def cable_cell(): # (1) Create a morphology with a single (cylindrical) segment of length=diameter=6 μm tree = arbor.segment_tree() tree.append( arbor.mnpos, arbor.mpoint(-3, 0, 0, 3), arbor.mpoint(3, 0, 0, 3), tag=1, ) # (2) Define the soma and its midpoint labels = arbor.label_dict({'soma': '(tag 1)', 'midpoint': '(location 0 0.5)'}) # (3) Create cell and set properties decor = arbor.decor() decor.set_property(Vm=-40) decor.paint('"soma"', arbor.density('hh')) decor.place('"midpoint"', arbor.iclamp( 10, 2, 0.8), "iclamp") decor.place('"midpoint"', arbor.spike_detector(-10), "detector") return arbor.cable_cell(tree, labels, decor)
def create_arbor_cell(cell, nl_network, gid): if cell.arbor_cell=='cable_cell': default_tree = arbor.segment_tree() radius = evaluate(cell.parameters['radius'], nl_network.parameters) if 'radius' in cell.parameters else 3 default_tree.append(arbor.mnpos, arbor.mpoint(-1*radius, 0, 0, radius), arbor.mpoint(radius, 0, 0, radius), tag=1) labels = arbor.label_dict({'soma': '(tag 1)', 'center': '(location 0 0.5)'}) labels['root'] = '(root)' decor = arbor.decor() v_init = evaluate(cell.parameters['v_init'], nl_network.parameters) if 'v_init' in cell.parameters else -70 decor.set_property(Vm=v_init) decor.paint('"soma"', cell.parameters['mechanism']) if gid==0: ic = arbor.iclamp( nl_network.parameters['input_del'], nl_network.parameters['input_dur'], nl_network.parameters['input_amp']) print_v("Stim: %s"%ic) decor.place('"center"', ic) decor.place('"center"', arbor.spike_detector(-10)) # (2) Mark location for synapse at the midpoint of branch 1 (the first dendrite). labels['synapse_site'] = '(location 0 0.5)' # (4) Attach a single synapse. decor.place('"synapse_site"', 'expsyn') default_cell = arbor.cable_cell(default_tree, labels, decor) print_v("Created a new cell for gid %i: %s"%(gid,cell)) print_v("%s"%(default_cell)) return default_cell
# (1) Create a morphology with a single (cylindrical) segment of length=diameter=6 μm tree = arbor.segment_tree() tree.append(arbor.mnpos, arbor.mpoint(-3, 0, 0, 3), arbor.mpoint(3, 0, 0, 3), tag=1) # (2) Define the soma and its midpoint labels = arbor.label_dict({'soma': '(tag 1)', 'midpoint': '(location 0 0.5)'}) # (3) Create cell and set properties decor = arbor.decor() decor.set_property(Vm=-40) decor.paint('"soma"', 'hh') decor.place('"midpoint"', arbor.iclamp(10, 2, 0.8)) decor.place('"midpoint"', arbor.spike_detector(-10)) # (4) Create cell and the single cell model based on it cell = arbor.cable_cell(tree, labels, decor) # (5) Make single cell model. m = arbor.single_cell_model(cell) # (6) Attach voltage probe sampling at 10 kHz (every 0.1 ms). m.probe('voltage', '"midpoint"', frequency=10000) # (7) Run simulation for 30 ms of simulated activity. m.run(tfinal=30) # (8) Print spike times. if len(m.spikes) > 0:
decor.set_ion('ca', method=mech('nernst/x=ca')) #decor.set_ion('ca', method='nernst/x=ca') # hh mechanism on the soma and axon. decor.paint('"soma"', 'hh') decor.paint('"axon"', 'hh') # pas mechanism the dendrites. decor.paint('"dend"', 'pas') # Increase resistivity on dendrites. decor.paint('"dend"', rL=500) # Attach stimuli that inject 4 nA current for 1 ms, starting at 3 and 8 ms. decor.place('"root"', arbor.iclamp(10, 1, current=5), "iclamp0") decor.place('"stim_site"', arbor.iclamp(3, 1, current=0.5), "iclamp1") decor.place('"stim_site"', arbor.iclamp(10, 1, current=0.5), "iclamp2") decor.place('"stim_site"', arbor.iclamp(8, 1, current=4), "iclamp3") # Detect spikes at the soma with a voltage threshold of -10 mV. decor.place('"axon_end"', arbor.spike_detector(-10), "detector") # Create the policy used to discretise the cell into CVs. # Use a single CV for the soma, and CVs of maximum length 1 μm elsewhere. soma_policy = arbor.cv_policy_single('"soma"') dflt_policy = arbor.cv_policy_max_extent(1.0) policy = dflt_policy | soma_policy decor.discretization(policy) # Combine morphology with region and locset definitions to make a cable cell. cell = arbor.cable_cell(morpho, labels, decor) print(cell.locations('axon_end')) # Make single cell model. m = arbor.single_cell_model(cell)
# Set initial membrane potential everywhere on the cell to -40 mV. cell.set_properties(Vm=-40) # Put hh dynamics on soma, and passive properties on the dendrites. cell.paint('"soma"', 'hh') cell.paint('"dend"', 'pas') # Set axial resistivity in dendrite regions (Ohm.cm) cell.paint('"dendn"', rL=500) cell.paint('"dendx"', rL=10000) # Attach stimuli with duration of 2 ms and current of 0.8 nA. # There are three stimuli, which activate at 10 ms, 50 ms and 80 ms. cell.place('"stim_site"', arbor.iclamp(10, 2, 0.8)) cell.place('"stim_site"', arbor.iclamp(50, 2, 0.8)) cell.place('"stim_site"', arbor.iclamp(80, 2, 0.8)) # Add a spike detector with threshold of -10 mV. cell.place('"root"', arbor.spike_detector(-10)) # Discretization: the default discretization in Arbor is 1 compartment per branch. # Let's be a bit more precise and make that every 2 micron: cell.compartments_length(2) # Make single cell model. m = arbor.single_cell_model(cell) # Attach voltage probes, sampling at 10 kHz. m.probe('voltage', '(location 0 0)', 10000) # at the soma. m.probe('voltage', '"dtips"', 10000) # at the tips of the dendrites. # Run simulation for 100 ms of simulated activity. tfinal = 100 m.run(tfinal)
def run_arb(fit, swc, current, t_start, t_stop): tree = arbor.load_swc_allen(swc, no_gaps=False) # Load mechanism data with open(fit) as fd: fit = json.load(fd) ## collect parameters in dict mechs = defaultdict(dict) ### Passive parameters ra = float(fit['passive'][0]['ra']) ### Remaining parameters for block in fit['genome']: mech = block['mechanism'] or 'pas' region = block['section'] name = block['name'] if name.endswith('_' + mech): name = name[:-(len(mech) + 1)] mechs[(mech, region)][name] = float(block['value']) # Label regions labels = arbor.label_dict({ 'soma': '(tag 1)', 'axon': '(tag 2)', 'dend': '(tag 3)', 'apic': '(tag 4)', 'center': '(location 0 0.5)' }) properties = fit['conditions'][0] T = properties['celsius'] + 273.15 Vm = properties['v_init'] # Run simulation morph = arbor.morphology(tree) # Build cell and attach Clamp and Detector cell = arbor.cable_cell(morph, labels) cell.place('center', arbor.iclamp(t_start, t_stop - t_start, current)) cell.place('center', arbor.spike_detector(-40)) cell.compartments_length(20) # read json file and proceed to set parameters and mechanisms # set global values print('Setting global parameters') print(f" * T = {T}K = {T - 273.15}C") print(f" * Vm = {Vm}mV") cell.set_properties(tempK=T, Vm=Vm, rL=ra) # Set reversal potentials print("Setting reversal potential for") for kv in properties['erev']: region = kv['section'] for k, v in kv.items(): if k == 'section': continue ion = k[1:] print(f' * region {region:6} species {ion:5}: {v:10}') cell.paint(region, arbor.ion(ion, rev_pot=float(v))) cell.set_ion('ca', int_con=5e-5, ext_con=2.0, method=arbor.mechanism('default_nernst/x=ca')) # Setup mechanisms and parameters print('Setting up mechanisms') ## Now paint the cell using the dict for (mech, region), vs in mechs.items(): print(f" * {region:10} -> {mech:10}: {str(vs):>60}", end=' ') try: if mech != 'pas': m = arbor.mechanism(mech, vs) cell.paint(region, m) else: m = arbor.mechanism('default_pas', { 'e': vs['e'], 'g': vs['g'] }) cell.paint(region, m) cell.paint(region, cm=vs["cm"] / 100, rL=vs["Ra"]) print("OK") except Exception as e: print("ERROR") print("When trying to set", mech, vs) print(" ->", e) exit() # Run the simulation, collecting voltages print('Simulation', end=' ') default = arbor.default_catalogue() catalogue = arbor.allen_catalogue() catalogue.extend(default, 'default_') model = arbor.single_cell_model(cell) model.properties.catalogue = catalogue model.probe('voltage', 'center', frequency=200000) model.run(tfinal=t_start + t_stop, dt=1000 / 200000) print('DONE') for t in model.traces: ts = t.time[:] vs = t.value[:] break spikes = np.array(model.spikes) count = len(spikes) print('Counted spikes', count) return np.array(ts), np.array(vs) + 14
decor.paint('"all"', 'ca_boyle') # Set calcium ion concentration. decor.set_ion('ca', int_con=0, ext_con=2.0, rev_pot = 40.0) # Set potassium reversal potential decor.set_ion('k', rev_pot=-60.0) # Place stimulus and a spike detector. # Stimulation at the center of the soma from t = 100 ms until t = 400 ms. # offset current "value" decor.place('"center"', arbor.iclamp(100, 300, value)) # Spike detection at center of soma. decor.place('"center"', arbor.spike_detector(-26)) #define CV policy and add it to decor #policy = arbor.cv_policy_every_segment('(all)') policy = arbor.cv_policy_fixed_per_branch(1, '(all)') #policy = arbor.cv_policy_max_extent(1.0) decor.discretization(policy) # (4) Create cell. dd1_cell = arbor.cable_cell(morph, labels, decor) # (5) Create probes for membrane voltage and calcium ion concentration. voltage_probe = arbor.cable_probe_membrane_voltage('"center"') ca_conc_probe = arbor.cable_probe_ion_int_concentration('"center"', "ca")
# Set initial membrane potential to -55 mV cell.set_properties(Vm=-55) # Use Nernst to calculate reversal potential for calcium. cell.set_ion('ca', method=mech('nernst/x=ca')) # hh mechanism on the soma and axon. cell.paint('"soma"', 'hh') cell.paint('"axon"', 'hh') # pas mechanism the dendrites. cell.paint('"dend"', 'pas') # Increase resistivity on dendrites. cell.paint('"dend"', rL=500) # Attach stimuli that inject 0.8 nA currents for 1 ms, starting at 3 and 8 ms. cell.place('"stim_site"', arbor.iclamp(3, 1, current=2)) cell.place('"stim_site"', arbor.iclamp(8, 1, current=4)) # Detect spikes at the soma with a voltage threshold of -10 mV. cell.place('"axon_end"', arbor.spike_detector(-10)) # Have one compartment between each sample point. cell.compartments_on_segments() # Make single cell model. m = arbor.single_cell_model(cell) # Attach voltage probes that sample at 50 kHz. m.probe('voltage', where='"root"', frequency=50000) m.probe('voltage', where=loc(2, 1), frequency=50000) m.probe('voltage', where='"stim_site"', frequency=50000) m.probe('voltage', where='"axon_end"', frequency=50000) # Simulate the cell for 15 ms. tfinal = 15
'center': '(location 0 0.5)'}) cell = arb.cable_cell(morphology, labels) # see !\circled{3}! cell.compartments_length(20) # discretisation strategy: max compartment length # !\circled{4}! load and assign electro-physical parameters defaults, regions, ions, mechanisms = utils.load_allen_fit('fit.json') # set defaults and override by region cell.set_properties(tempK=defaults.tempK, Vm=defaults.Vm, cm=defaults.cm, rL=defaults.rL) for region, vs in regions: cell.paint('"'+region+'"', tempK=vs.tempK, Vm=vs.Vm, cm=vs.cm, rL=vs.rL) # set reversal potentials for region, ion, e in ions: cell.paint('"'+region+'"', ion, rev_pot=e) cell.set_ion('ca', int_con=5e-5, ext_con=2.0, method=arb.mechanism('nernst/x=ca')) # assign ion dynamics for region, mech, values in mechanisms: cell.paint('"'+region+'"', arb.mechanism(mech, values)) print(mech) # !\circled{5}! attach stimulus and spike detector cell.place('"center"', arb.iclamp(200, 1000, 0.15)) cell.place('"center"', arb.spike_detector(-40)) # !\circled{6}! set up runnable simulation model = arb.single_cell_model(cell) model.probe('voltage', '"center"', frequency=200000) # see !\circled{5}! # !\circled{7}! assign catalogues model.properties.catalogue = arb.allen_catalogue() model.properties.catalogue.extend(arb.default_catalogue(), '') # !\circled{8}! run simulation and plot results model.run(tfinal=1400, dt=0.005) utils.plot_results(model)
# neuroML: <channelDensity id="ca_boyle_all" ionChannel="ca_boyle" condDensity="2 mS_per_cm2" erev="40 mV" ion="ca"/> ca_boyle_all = arbor.mechanism("ca_boyle") # put hh dynamics on soma and passive properties on the dendrites #dd1_cell.paint('"soma"', 'Leak') dd1_cell.paint('"soma"', 'k_slow') dd1_cell.paint('"soma"', 'k_fast') dd1_cell.paint('"soma"', 'CaPoolTH') dd1_cell.paint('"soma"', 'ca_boyle') #dd1_cell.paint('"soma"', 'hh') dd1_cell.place('"center"', arbor.iclamp(100, 300, 0.0087)) dd1_cell.place('"center"', arbor.spike_detector(-26)) # (4) Make single cell model. m = arbor.single_cell_model(dd1_cell) # (5) Attach voltage probe sampling at 10 kHz (every 0.1 ms). m.probe('voltage', '"center"', frequency=10000) # (6) Run simulation for 30 ms of simulated activity. m.run(tfinal=500) # (7) Print spike times, if any. if len(m.spikes)>0: print('{} spikes:'.format(len(m.spikes))) for s in m.spikes:
# Set initial membrane potential everywhere on the cell to -40 mV. cell.set_properties(Vm=-40) # Put hh dynamics on soma, and passive properties on the dendrites. cell.paint('soma', 'hh') cell.paint('dend', 'pas') # Set axial resistivity in dendrite regions (Ohm.cm) cell.paint('dendn', rL=500) cell.paint('dendx', rL=10000) # Attach stimuli with duration of 2 ms and current of 0.8 nA. # There are three stimuli, which activate at 10 ms, 50 ms and 80 ms. cell.place('stim_site', arbor.iclamp(10, 2, 0.8)) cell.place('stim_site', arbor.iclamp(50, 2, 0.8)) cell.place('stim_site', arbor.iclamp(80, 2, 0.8)) # Add a spike detector with threshold of -10 mV. cell.place('root', arbor.spike_detector(-10)) # Make single cell model. m = arbor.single_cell_model(cell) # Attach voltage probes, sampling at 10 kHz. m.probe('voltage', loc(0, 0), 10000) # at the soma. m.probe('voltage', 'dtips', 10000) # at the tips of the dendrites. # Run simulation for 100 ms of simulated activity. tfinal = 100 m.run(tfinal) # Print spike times. if len(m.spikes) > 0: print('{} spikes:'.format(len(m.spikes)))
# Create a sample tree with a single sample of radius 3 μm tree = arbor.sample_tree() tree.append(arbor.msample(x=0, y=0, z=0, radius=3, tag=2)) labels = arbor.label_dict({'soma': '(tag 2)', 'center': '(location 0 0.5)'}) cell = arbor.cable_cell(tree, labels) # Set initial membrane potential everywhere on the cell to -40 mV. cell.set_properties(Vm=-40) # Put hh dynamics on soma, and passive properties on the dendrites. cell.paint('soma', 'hh') # Attach stimuli with duration of 2 ms and current of 0.8 nA. cell.place('center', arbor.iclamp(10, 2, 0.8)) # Add a spike detector with threshold of -10 mV. cell.place('center', arbor.spike_detector(-10)) # Make single cell model. m = arbor.single_cell_model(cell) # Attach voltage probes, sampling at 10 kHz. m.probe('voltage', 'center', 10000) # Run simulation for 100 ms of simulated activity. tfinal = 30 m.run(tfinal) # Print spike times. if len(m.spikes) > 0: print('{} spikes:'.format(len(m.spikes))) for s in m.spikes:
def create_arbor_cell(self, cell, gid, pop_id, index): if cell.arbor_cell == "cable_cell": default_tree = arbor.segment_tree() radius = (evaluate(cell.parameters["radius"], self.nl_network.parameters) if "radius" in cell.parameters else 3) default_tree.append( arbor.mnpos, arbor.mpoint(-1 * radius, 0, 0, radius), arbor.mpoint(radius, 0, 0, radius), tag=1, ) labels = arbor.label_dict({ "soma": "(tag 1)", "center": "(location 0 0.5)" }) labels["root"] = "(root)" decor = arbor.decor() v_init = (evaluate(cell.parameters["v_init"], self.nl_network.parameters) if "v_init" in cell.parameters else -70) decor.set_property(Vm=v_init) decor.paint('"soma"', arbor.density(cell.parameters["mechanism"])) decor.place('"center"', arbor.spike_detector(0), "detector") for ip in self.input_info: if self.input_info[ip][0] == pop_id: print_v("Stim: %s (%s) being placed on %s" % (ip, self.input_info[ip], pop_id)) for il in self.input_lists[ip]: cellId, segId, fract, weight = il if cellId == index: if self.input_info[ip][ 1] == 'i_clamp': # TODO: remove hardcoding of this... ic = arbor.iclamp( self.nl_network.parameters["input_del"], self.nl_network.parameters["input_dur"], self.nl_network.parameters["input_amp"], ) print_v("Stim: %s on %s" % (ic, gid)) decor.place('"center"', ic, "iclamp") # (2) Mark location for synapse at the midpoint of branch 1 (the first dendrite). labels["synapse_site"] = "(location 0 0.5)" # (4) Attach a single synapse. decor.place('"synapse_site"', arbor.synapse("expsyn"), "syn") default_cell = arbor.cable_cell(default_tree, labels, decor) print_v("Created a new cell for gid %i: %s" % (gid, cell)) print_v("%s" % (default_cell)) return default_cell
decor.paint('"custom"', tempK=270) decor.paint('"soma"', Vm=-50) # Paint density mechanisms. decor.paint('"all"', 'pas') decor.paint('"custom"', 'hh') decor.paint('"dend"', mech('Ih', {'gbar': 0.001})) # Place stimuli and spike detectors. decor.place('"root"', arbor.iclamp(10, 1, current=2), "iclamp0") decor.place('"root"', arbor.iclamp(30, 1, current=2), "iclamp1") decor.place('"root"', arbor.iclamp(50, 1, current=2), "iclamp2") decor.place('"axon_terminal"', arbor.spike_detector(-10), "detector") # Set cv_policy soma_policy = arbor.cv_policy_single('"soma"') dflt_policy = arbor.cv_policy_max_extent(1.0) policy = dflt_policy | soma_policy decor.discretization(policy) # Create a cell cell = arbor.cable_cell(morph, labels, decor) # (2) Declare a probe. probe = arbor.cable_probe_membrane_voltage('"custom_terminal"')
tree = arbor.segment_tree() tree.append(arbor.mnpos, arbor.mpoint(-3, 0, 0, 3), arbor.mpoint(3, 0, 0, 3), tag=1) # Label dictionary labels = arbor.label_dict() labels['centre'] = '(location 0 0.5)' # Decorations decor = arbor.decor() decor.set_property(Vm=-40) decor.paint('(all)', 'hh') decor.place('"centre"', arbor.iclamp(10, 2, 0.8)) decor.place('"centre"', arbor.spike_detector(-10)) cell = arbor.cable_cell(tree, labels, decor) # (3) Instantiate recipe with a voltage probe. recipe = single_recipe(cell, [arbor.cable_probe_membrane_voltage('"centre"')]) # (4) Instantiate simulation and set up sampling on probe id (0, 0). context = arbor.context() domains = arbor.partition_load_balance(recipe, context) sim = arbor.simulation(recipe, domains, context) sim.record(arbor.spike_recording.all) handle = sim.sample((0, 0), arbor.regular_schedule(0.1))