Exemple #1
0
    def _extract_collision_shapes_data(self):
        """
        """
        cs = self.collision_shapes
        sdist = zeros(len(cs))
        svel = zeros(len(cs))
        J = zeros((len(cs), self.ndof))
        dJ = zeros((len(cs), self.ndof))

        for i in arange(len(self.collision_shapes)):
            sdist[i], Hgc0, Hgc1 = cs[i][1](cs[i][0])
            sdist[i] -= self.options['avoidance margin']
            f0, f1 = cs[i][0][0].frame, cs[i][0][1].frame

            Hf0c0, Hf1c1 = dot(inv(f0.pose), Hgc0), dot(inv(f1.pose), Hgc1)
            tf0_g_f0, tf1_g_f1 = f0.twist, f1.twist
            Adc0f0, Adc1f1 = adjoint(inv(Hf0c0)), adjoint(inv(Hf1c1))
            tc0_g_c0, tc1_g_c1 = dot(Adc0f0, tf0_g_f0), dot(Adc1f1, tf1_g_f1)
            Jc0, Jc1 = dot(Adc0f0, f0.jacobian), dot(Adc1f1, f1.jacobian)
            #as Tc_f_c = 0, no motion between the 2 frames because same body
            dJc0, dJc1 = dot(Adc0f0, f0.jacobian), dot(Adc1f1, f1.jacobian)

            svel[i] = tc1_g_c1[5] - tc0_g_c0[5]
            dJ[i, :] = dJc1[5] - dJc0[5]
            if f1.body in self.bodies:
                J[i, :] += Jc1[5]
            if f0.body in self.bodies:
                J[i, :] -= Jc0[5]
        return sdist, svel, J, dJ
Exemple #2
0
    def _extract_collision_shapes_data(self):
        """
        """
        cs = self.collision_shapes
        sdist = zeros(len(cs))
        svel  = zeros(len(cs))
        J      = zeros((len(cs), self.ndof))
        dJ     = zeros((len(cs), self.ndof))

        for i in arange(len(self.collision_shapes)):
            sdist[i], Hgc0, Hgc1 = cs[i][1](cs[i][0])
            sdist[i] -= self.options['avoidance margin']
            f0, f1 = cs[i][0][0].frame, cs[i][0][1].frame

            Hf0c0, Hf1c1 = dot(inv(f0.pose), Hgc0), dot(inv(f1.pose), Hgc1)
            tf0_g_f0, tf1_g_f1 = f0.twist, f1.twist
            Adc0f0, Adc1f1 = adjoint(inv(Hf0c0)), adjoint(inv(Hf1c1))
            tc0_g_c0, tc1_g_c1 = dot(Adc0f0, tf0_g_f0), dot(Adc1f1, tf1_g_f1)
            Jc0, Jc1 = dot(Adc0f0, f0.jacobian), dot(Adc1f1, f1.jacobian)
            #as Tc_f_c = 0, no motion between the 2 frames because same body
            dJc0, dJc1 = dot(Adc0f0, f0.jacobian), dot(Adc1f1, f1.jacobian)
            
            svel[i] = tc1_g_c1[5] - tc0_g_c0[5]
            dJ[i, :] = dJc1[5] - dJc0[5]
            if f1.body in self.bodies:
                J[i, :]  += Jc1[5]
            if f0.body in self.bodies:
                J[i, :]  -= Jc0[5]
        return sdist, svel, J, dJ
Exemple #3
0
 def add_body(name, mass, com_position, gyration_radius):
     #mass matrix at com
     mass_g = mass * diag(hstack((gyration_radius**2, (1, 1, 1))))
     H_fg = eye(4)
     H_fg[0:3, 3] = com_position
     H_gf = Hg.inv(H_fg)
     #mass matrix at body's frame origin:
     mass_o = dot(Hg.adjoint(H_gf).T, dot(mass_g, Hg.adjoint(H_gf)))
     bodies.append(Body(name=prefix+name, mass=mass_o))
Exemple #4
0
 def add_body(name, mass, com_position, gyration_radius):
     #mass matrix at com
     mass_g = mass * diag(hstack((gyration_radius**2, (1, 1, 1))))
     H_fg = eye(4)
     H_fg[0:3, 3] = com_position
     H_gf = Hg.inv(H_fg)
     #mass matrix at body's frame origin:
     mass_o = dot(Hg.adjoint(H_gf).T, dot(mass_g, Hg.adjoint(H_gf)))
     bodies.append(Body(name=prefix + name, mass=mass_o))
Exemple #5
0
    def _update_Jc(self):
        """ Extract the Jacobian and dJacobian matrix of contact points.

        """
        self.Jc[:]  = 0.
        self.dJc[:] = 0.
        i = 0
        for c in self.constraints:
            if c.is_enabled() and c.is_active() and self.is_enabled[c]:
                frame0, frame1 = c._frames[0], c._frames[1]
                if isinstance(c, PointContact):
                    self.dJc[3*i:(3*(i+1)), :] = frame1.djacobian[3:6] - \
                                                 frame0.djacobian[3:6]
                    if frame1.body in self.bodies:
                        self.Jc [3*i:(3*(i+1)), :] += frame1.jacobian[3:6]
                    if frame0.body in self.bodies:
                        self.Jc [3*i:(3*(i+1)), :] -= frame0.jacobian[3:6]
                elif isinstance(c, BallAndSocketConstraint):
                    H1_0   = dot(inv(frame1.pose), frame0.pose)
                    Ad1_0  = adjoint(H1_0)
                    Ad0_1  = iadjoint(H1_0)
                    T0_g_0 = frame0.twist
                    T1_g_1 = frame1.twist
                    T1_g_0 = dot(Ad0_1, T1_g_1)
                    T0_1_0 = T0_g_0 - T1_g_0
                    J0 = dot(Ad1_0, frame0.jacobian)
                    J1 = frame1.jacobian
                    dJ0 = dot(Ad1_0, frame0.djacobian) + \
                          dot(dAdjoint(Ad1_0, T0_1_0), frame0.jacobian)
                    dJ1 = frame1.djacobian
                    self.Jc[3*i:(3*(i+1)), :]  = (J1[3:6] - J0[3:6])
                    self.dJc[3*i:(3*(i+1)), :] = (dJ1[3:6] - dJ0[3:6])
            i += 1
Exemple #6
0
    def _update_Jc(self):
        """ Extract the Jacobian and dJacobian matrix of contact points.

        """
        self.Jc[:] = 0.
        self.dJc[:] = 0.
        i = 0
        for c in self.constraints:
            if c.is_enabled() and c.is_active() and self.is_enabled[c]:
                frame0, frame1 = c._frames[0], c._frames[1]
                if isinstance(c, PointContact):
                    self.dJc[3*i:(3*(i+1)), :] = frame1.djacobian[3:6] - \
                                                 frame0.djacobian[3:6]
                    if frame1.body in self.bodies:
                        self.Jc[3 * i:(3 * (i + 1)), :] += frame1.jacobian[3:6]
                    if frame0.body in self.bodies:
                        self.Jc[3 * i:(3 * (i + 1)), :] -= frame0.jacobian[3:6]
                elif isinstance(c, BallAndSocketConstraint):
                    H1_0 = dot(inv(frame1.pose), frame0.pose)
                    Ad1_0 = adjoint(H1_0)
                    Ad0_1 = iadjoint(H1_0)
                    T0_g_0 = frame0.twist
                    T1_g_1 = frame1.twist
                    T1_g_0 = dot(Ad0_1, T1_g_1)
                    T0_1_0 = T0_g_0 - T1_g_0
                    J0 = dot(Ad1_0, frame0.jacobian)
                    J1 = frame1.jacobian
                    dJ0 = dot(Ad1_0, frame0.djacobian) + \
                          dot(dAdjoint(Ad1_0, T0_1_0), frame0.jacobian)
                    dJ1 = frame1.djacobian
                    self.Jc[3 * i:(3 * (i + 1)), :] = (J1[3:6] - J0[3:6])
                    self.dJc[3 * i:(3 * (i + 1)), :] = (dJ1[3:6] - dJ0[3:6])
            i += 1
Exemple #7
0
 def update(self, dt):
     r"""
     This method calls the collision solver and updates the constraint
     status and the contact frames poses accordingly.
     The two frames have the same orientation, with the contact normal along
     the `z`-axis
     """
     (sdist, H_gc0, H_gc1) = self._collision_solver(self._shapes)
     H_b0g = Hg.inv(self._shapes[0].frame.body.pose)
     H_b1g = Hg.inv(self._shapes[1].frame.body.pose)
     self._frames[0].bpose = dot(H_b0g, H_gc0)
     self._frames[1].bpose = dot(H_b1g, H_gc1)
     H_c0c1 = dot(Hg.inv(H_gc0), H_gc1)
     dsdist = (dot(Hg.adjoint(H_c0c1)[5, :], self._frames[1].twist) -
               self._frames[0].twist[5])
     self._is_active = (sdist + dsdist * dt < self._proximity)
     self._sdist = sdist
     self._force[:] = 0.
 def update(self, dt):
     r"""
     This method calls the collision solver and updates the constraint
     status and the contact frames poses accordingly.
     The two frames have the same orientation, with the contact normal along
     the `z`-axis
     """
     (sdist, H_gc0, H_gc1) = self._collision_solver(self._shapes)
     H_b0g = Hg.inv(self._shapes[0].frame.body.pose)
     H_b1g = Hg.inv(self._shapes[1].frame.body.pose)
     self._frames[0].bpose = dot(H_b0g, H_gc0)
     self._frames[1].bpose = dot(H_b1g, H_gc1)
     H_c0c1 = dot(Hg.inv(H_gc0), H_gc1)
     dsdist = (dot(Hg.adjoint(H_c0c1)[5,:], self._frames[1].twist)
               -self._frames[0].twist[5])
     self._is_active = (sdist + dsdist*dt < self._proximity)
     self._sdist = sdist
     self._force[:] = 0.
Exemple #9
0
def transport(M, H):
    """ Transport (express) the mass matrix into another frame.

    :param M: the mass matrix expressed in the original frame (say, `a`)
    :type  M: (6,6)-array
    :param H: homogeneous matrix from the new frame (say `b`) to the
              original one: `H_{ab}`
    :type H: (4,4)-array
    :return: the mass matrix expressed in the new frame (say, `b`)
    :rtype: (6,6)-array

    **Example:**

    >>> M_a = diag((3., 2., 4., 1., 1., 1.))
    >>> H_ab = Hg.transl(1., 3., 0.)
    >>> M_b = transport(M_a, H_ab)
    >>> allclose(M_b, [[ 12.,  -3.,   0.,   0.,   0.,  -3.],
    ...                [ -3.,   3.,   0.,   0.,   0.,   1.],
    ...                [  0.,   0.,  14.,   3.,  -1.,   0.],
    ...                [  0.,   0.,   3.,   1.,   0.,   0.],
    ...                [  0.,   0.,  -1.,   0.,   1.,   0.],
    ...                [ -3.,   1.,   0.,   0.,   0.,   1.]])
    True
    >>> ismassmatrix(M_b)
    True
    >>> from math import pi
    >>> H_ab = Hg.rotx(pi/4)
    >>> M_b = transport(M_a, H_ab)
    >>> allclose(M_b, [[ 3.,  0.,  0.,  0.,  0.,  0.],
    ...                [ 0.,  3.,  1.,  0.,  0.,  0.],
    ...                [ 0.,  1.,  3.,  0.,  0.,  0.],
    ...                [ 0.,  0.,  0.,  1.,  0.,  0.],
    ...                [ 0.,  0.,  0.,  0.,  1.,  0.],
    ...                [ 0.,  0.,  0.,  0.,  0.,  1.]])
    True
    >>> ismassmatrix(M_b)
    True

    """
    assert ismassmatrix(M)
    assert Hg.ishomogeneousmatrix(H)
    Ad = Hg.adjoint(H)
    return dot(Ad.T, dot(M, Ad))
Exemple #10
0
def transport(M, H):
    """ Transport (express) the mass matrix into another frame.

    :param M: the mass matrix expressed in the original frame (say, `a`)
    :type  M: (6,6)-array
    :param H: homogeneous matrix from the new frame (say `b`) to the
              original one: `H_{ab}`
    :type H: (4,4)-array
    :return: the mass matrix expressed in the new frame (say, `b`)
    :rtype: (6,6)-array

    **Example:**

    >>> M_a = diag((3., 2., 4., 1., 1., 1.))
    >>> H_ab = Hg.transl(1., 3., 0.)
    >>> M_b = transport(M_a, H_ab)
    >>> allclose(M_b, [[ 12.,  -3.,   0.,   0.,   0.,  -3.],
    ...                [ -3.,   3.,   0.,   0.,   0.,   1.],
    ...                [  0.,   0.,  14.,   3.,  -1.,   0.],
    ...                [  0.,   0.,   3.,   1.,   0.,   0.],
    ...                [  0.,   0.,  -1.,   0.,   1.,   0.],
    ...                [ -3.,   1.,   0.,   0.,   0.,   1.]])
    True
    >>> ismassmatrix(M_b)
    True
    >>> from math import pi
    >>> H_ab = Hg.rotx(pi/4)
    >>> M_b = transport(M_a, H_ab)
    >>> allclose(M_b, [[ 3.,  0.,  0.,  0.,  0.,  0.],
    ...                [ 0.,  3.,  1.,  0.,  0.,  0.],
    ...                [ 0.,  1.,  3.,  0.,  0.,  0.],
    ...                [ 0.,  0.,  0.,  1.,  0.,  0.],
    ...                [ 0.,  0.,  0.,  0.,  1.,  0.],
    ...                [ 0.,  0.,  0.,  0.,  0.,  1.]])
    True
    >>> ismassmatrix(M_b)
    True

    """
    assert ismassmatrix(M)
    assert Hg.ishomogeneousmatrix(H)
    Ad = Hg.adjoint(H)
    return dot(Ad.T, dot(M, Ad))
Exemple #11
0
    def _update_matrices(self, rstate, dt):
        """
        """
        H_0_f = self._frame.pose
        HR_0_f = H_0_f.copy()
        HR_0_f[0:3, 3] = 0
        AdR_0_f = adjoint(HR_0_f)
        T_f_0_f = self._frame.twist #WARNING: twist relative to its frame
        T_f_0_0 = dot(AdR_0_f, T_f_0_f)
        T_f_0_f_only_rot = T_f_0_f.copy()
        T_f_0_f_only_rot[3:6] = 0.
        dAdR_0_f = dAdjoint(AdR_0_f, T_f_0_f_only_rot)

        J  = dot(AdR_0_f, self._frame.jacobian)
        dJ = dot(AdR_0_f, self._frame.djacobian) + \
             dot(dAdR_0_f, self._frame.jacobian)

        gpos = self._frame.pose
        gvel = T_f_0_0
        cmd = self._ctrl.update(gpos, gvel, rstate, dt)

        self._J[:]     = J[self._cdof, :]
        self._dJ[:]    = dJ[self._cdof, :]
        self._dVdes[:] = cmd[self._cdof]
Exemple #12
0
 def iadjoint(self):
     return Hg.adjoint(self.ipose)
Exemple #13
0
 def adjoint(self):
     return Hg.adjoint(self.pose)
Exemple #14
0
    from arboris.homogeneousmatrix import transl
    H_bc = transl(1, 1, 1)
else:
    H_bc = eye(4)
half_extents = (.5, .5, .5)
mass = 1.
body = Body(name='box_body',
            mass=massmatrix.transport(massmatrix.box(half_extents, mass),
                                      H_bc))
subframe = SubFrame(body, H_bc, name="box_com")

if True:
    twist_c = array([0., 0., 0., 0., 0., 0.])
else:
    twist_c = array([1, 1, 1, 0, 0, 0.])
twist_b = dot(homogeneousmatrix.adjoint(H_bc), twist_c)
freejoint = FreeJoint(gpos=homogeneousmatrix.inv(H_bc), gvel=twist_b)
w.add_link(w.ground, freejoint, body)
w.register(Box(subframe, half_extents))

weightc = WeightController()
w.register(weightc)
obs = TrajLog(w.getframes()['box_com'], w)

from arboris.visu_osg import Drawer

timeline = arange(0, 1, 5e-3)
simulate(w, timeline, [obs, Drawer(w)])

time = timeline[:-1]
obs.plot_error()
Exemple #15
0
 def iadjoint(self):
     return Hg.adjoint(self.ipose)
Exemple #16
0
 def adjoint(self):
     return Hg.adjoint(self.pose)
Exemple #17
0
    def update_dynamic(self, pose, jac, djac, twist):
        r""" Compute the body ``pose, jac, djac, twist`` and its children ones.

        This method (1) sets the body dynamical model (pose, jacobian,
        hessian and twist) to the values given as argument, (2) computes
        the dynamical model of the children bodies and (3) call the
        equivalent method on them.

        As a result, the dynamical model of all the bodies is computed
        recursively.

        :param pose: the body pose relative to the ground: `H_{gb}`
        :type pose: 4x4 ndarray
        :param jac: the body jacobian relative to the world (in body frame):
            `\J[b]_{b/g}`
        :type jac: 6x(ndof) ndarray
        :param djac: the derivative of the body jacobian: `\dJ[b]_{b/g}`
        :param twist: the body twist: `\twist[b]_{b/g}`
        :type twist: 6 ndarray

        **Algorithm:**

        Let's define the following notations:

        - `g`: the ground body,
        - `p`: the parent body (which is the present :class:`arboris.Body`
          instance)
        - `c`: a child body,
        - `j`: the joint between the bodies `p` and `c`,
        - `r`: reference frame of the joint `j`, rigidly fixed to the parent
          body
        - `n`: new frame of the joint `j`, rigidly fixed to the child body

        .. image:: img/body_model.svg
           :width: 300px

        One can notice that `H_{nc}` and `H_{pr}` are constant.

        The child body pose can be computed as

        .. math::

            H_{gc} &= H_{gp} \; H_{pc} \\
                   &= H_{gp} \; (H_{pr} \; H_{rn} \; H_{nc})

        where `H_{rn}` depends on the joint generalized configuration and is
        given by its :attr:`~arboris.core.Joint.pose` attribute.

        The chil body twist is given as

        .. math::

            \twist[c]_{c/g} &= \Ad_{cp} \; \twist[p]_{p/g} + \twist[c]_{c/p} \\
            &= \Ad_{cp} \; \twist[p]_{p/g} + \Ad_{cn} \; \twist[n]_{n/r} \\
            &= \Ad_{cp} \; \J[p]_{p/g} \; \GVel
               + \Ad_{cn} \; \J[n]_{n/r} \; \GVel_j \\
            &= \J[c]_{c/g} \; \GVel

        where  `\twist[n]_{n/r}` is given by the joint
        :attr:`~arboris.core.Joint.twist` attribute.
        `\GVel_j` is the generalized velocity of the joint `j` and is
        related to the world generalized velocity by trivial projection

        .. math::
            \GVel_j &=
                \begin{bmatrix}
                    0 & \cdots &0 & I & 0 & \cdots & 0
                \end{bmatrix} \; \GVel

        therefore, the child body jacobian is

        .. math::
            \J[c]_{c/g} &= \Ad_{cp} \; \J[p]_{p/g} +
            \begin{bmatrix}
            0 & \cdots & 0 & \Ad_{cn} \; \J[n]_{n/r} & 0 & \cdots & 0
            \end{bmatrix} \\

        where `\J[n]_{n/r}` is given by the joint
        :attr:`~arboris.core.Joint.jacobian` attribute. Derivating the previous
        expression leads to the child body acceleration:

        .. math::
            \dtwist[c]_{c/g} &= \dAd_{cp} \; \J[p]_{p/g} \; \GVel
            + \Ad_{cp} \; \dJ[p]_{p/g} \; \GVel
            + \Ad_{cp} \; \J[p]_g \; \dGVel
            + \Ad_{cn} \; \dJ[n]_{n/r} \; \GVel_j
            + \Ad_{cn} \; \J[n]_{m/r} \dGVel_j \\
            &= \J[c]_{c/g} \; \dGVel + \dJ[c]_{c/g} \; \GVel

        the expression of the child body hessian is then obtained by
        identification:

        .. math::
            \dJ[c]_{c/g} \; \GVel
            &= \dAd_{cp} \; \J[p]_{p/g}  \; \GVel
            +  \Ad_{cp}  \; \dJ[p]_{p/g} \; \GVel
            +  \Ad_{cn}  \; \dJ[n]_{n/r} \; \GVel_j \\

            \dJ[c]_{c/g}
            &= \dAd_{cp} \; \J[p]_{p/g} + \Ad_{cp} \; \dJ[p]_{p/g} +
            \begin{bmatrix}
            0 & \cdots & 0 & (\Ad_{cn} \; \dJ[n]_{n/r}) & 0 & \cdots & 0
            \end{bmatrix}

        with

        .. math::
            \dAd_{cp} &= \Ad_{cn} \; \dAd_{nr} \; \Ad_{rp}

        and where `\dAd_{nr}` and `\dJ[n]_{n/r}` are respectively given by
        the joint :attr:`~arboris.core.Joint.idadjoint` and
        :attr:`~arboris.core.Joint.djacobian` attributes.

        T_ab: velocity of {a} relative to {b} expressed in {a} (body twist)
        """
        self._pose = pose
        self._jacobian = jac
        self._djacobian = djac
        self._twist = twist
        wx = array([[0, -self.twist[2], self.twist[1]],
                    [self.twist[2], 0, -self.twist[0]],
                    [-self.twist[1], self.twist[0], 0]])
        if self.mass[5, 5] <= 1e-10:  #TODO: avoid hardcoded value
            rx = zeros((3, 3))
        else:
            rx = self.mass[0:3, 3:6] / self.mass[5, 5]
        self._nleffects = zeros((6, 6))
        self._nleffects[0:3, 0:3] = wx
        self._nleffects[3:6, 3:6] = wx
        self._nleffects[0:3, 3:6] = dot(rx, wx) - dot(wx, rx)
        self._nleffects = dot(self.nleffects, self.mass)

        H_gp = pose
        J_pg = jac
        dJ_pg = djac
        T_pg = twist
        for j in self.childrenjoints:
            H_cn = j.frame1.bpose
            H_pr = j.frame0.bpose
            H_rn = j.pose
            H_pc = dot(H_pr, dot(H_rn, Hg.inv(H_cn)))
            child_pose = dot(H_gp, H_pc)
            Ad_cp = Hg.iadjoint(H_pc)
            Ad_cn = Hg.adjoint(H_cn)
            Ad_rp = Hg.adjoint(Hg.inv(H_pr))
            dAd_nr = j.idadjoint
            dAd_cp = dot(Ad_cn, dot(dAd_nr, Ad_rp))
            T_nr = j.twist
            J_nr = j.jacobian
            dJ_nr = j.djacobian
            child_twist = dot(Ad_cp, T_pg) + dot(Ad_cn, T_nr)
            child_jac = dot(Ad_cp, J_pg)
            child_jac[:, j.dof] += dot(Ad_cn, J_nr)

            child_djac = dot(dAd_cp, J_pg) + dot(Ad_cp, dJ_pg)
            child_djac[:, j.dof] += dot(Ad_cn, dJ_nr)
            j.frame1.body.update_dynamic(child_pose, child_jac, child_djac,
                                         child_twist)
Exemple #18
0
 def jacobian(self):
     H_01 = dot(Hg.inv(self._frames[0].pose), self._frames[1].pose)
     return (dot(Hg.adjoint(H_01)[2:6, :], self._frames[1].jacobian) -
             self._frames[0].jacobian[2:6, :])
print("H_o_b * H_b_o\n", np.dot(H_o_b, H_b_o))


isHM =Hg.ishomogeneousmatrix(H_o_b)   # check validity of homogeneous matrix
print("is homogeneous matrix?", isHM)


p_b = np.array([.4,.5,.6])         # point p expressed in frame {b}
p_o = Hg.pdot(H_o_b, p_b)       # point p expressed in frame {o}


v_b = np.array([.4,.5,.6])         # idem for vector, here affine part is not
v_o = Hg.vdot(H_o_b, v_b)       # taken into account


Ad_o_b = Hg.adjoint(H_o_b)      # to obtain the adjoint related to displacement
Ad_b_o = Hg.iadjoint(H_o_b)     # to obtain the adjoint of the inverse




##### About adjoint matrix #####################################################

import arboris.adjointmatrix as Adm


isAd = Adm.isadjointmatrix(Ad_b_o)  # check validity of adjoint matrix
print("is adjoint matrix?", isAd)


Ad_b_o = Adm.inv(Ad_o_b)            # get inverse of adjoint matrix
Exemple #20
0
    def update_dynamic(self, pose, jac, djac, twist):
        r"""Sets the body ``pose, jac, djac, twist`` and computes its children ones.

        This method (1) sets the body dynamical model (pose, jacobian,
        hessian and twist) to the values given as argument, (2) computes
        the dynamical model of the children bodies and (3) call the
        equivalent method on them.

        As a result, the dynamical model of all the bodies is computed
        recursively.

        :param pose: the body pose relative to the ground: `H_{gb}`
        :type pose: 4x4 ndarray
        :param jac: the body jacobian relative to the world (in body frame):
            `\J[b]_{b/g}`
        :type jac: 6x(ndof) ndarray
        :param djac: the derivative of the body jacobian: `\dJ[b]_{b/g}`
        :param twist: the body twist: `\twist[b]_{b/g}`
        :type twist: 6 ndarray

        **Algorithm:**

        Let's define the following notations:

        - `g`: the ground body,
        - `p`: the parent body (which is the present :class:`arboris.Body`
          instance)
        - `c`: a child body,
        - `j`: the joint between the bodies `p` and `c`,
        - `r`: reference frame of the joint `j`, rigidly fixed to the parent
          body
        - `n`: new frame of the joint `j`, rigidly fixed to the child body

        .. image:: img/body_model.png

        One can notice that `H_{nc}` and `H_{pr}` are constant.

        The child body pose can be computed as

        .. math::

            H_{gc} &= H_{gp} \; H_{pc} \\
                   &= H_{gp} \; (H_{pr} \; H_{rn} \; H_{nc})

        where `H_{rn}` depends on the joint generalized configuration and is
        given by its :attr:`~arboris.core.Joint.pose` attribute.

        The chil body twist is given as

        .. math::

            \twist[c]_{c/g} &= \Ad[c]_p \; \twist[p]_{p/g} + \twist[c]_{c/p} \\
            &= \Ad[c]_p \; \twist[p]_{p/g} + \Ad[c]_n \; \twist[n]_{n/r} \\
            &= \Ad[c]_p \; \J[p]_{p/g} \; \GVel
               + \Ad[c]_n \; \J[n]_{n/r} \; \GVel_j \\
            &= \J[c]_{c/g} \; \GVel

        where  `\twist[n]_{n/r}` isgiven by the joint
        :attr:`~arboris.core.Joint.twist` attribute.
        \GVel_j is the generalized velocity of the joint `j` and is
        related to the world generalized velocity by trivial projection

        .. math::
            \GVel_j &=
                \begin{bmatrix}
                    0 & \cdots &0 & I & 0 & \cdots & 0
                \end{bmatrix} \; \GVel

        therefore, the child body jacobian is

        .. math::
            \J[c]_{c/g} &= \Ad[c]_p \; \J[p]_{p/g} +
            \begin{bmatrix}
            0 & \cdots & 0 & \Ad[c]_n \; \J[n]_{n/r} & 0 & \cdots & 0
            \end{bmatrix} \\

        where `\J[n]_{n/r}` is given by the joint
        :attr:`~arboris.core.Joint.jacobian` attribute. Derivating the previous
        expression leads to the child body acceleration:

        .. math::
            \dtwist[c]_{c/g} &= \dAd[c]_p \; \J[p]_{p/g} \; \GVel
            + \Ad[c]_p \; \dJ[p]_{p/g} \; \GVel
            + \Ad[c]_p \; \J[p]_g \; \dGVel
            + \Ad[c]_n \; \dJ[n]_{n/r} \; \GVel_j
            + \Ad[c]_n \; \J[n]_{m/r} \dGVel_j \\
            &= \J[c]_{c/g} \; \dGVel + \dJ[c]_{c/g} \; \GVel

        the expression of the child body hessian is then obtained by
        identification:

        .. math::
            \dJ[c]_{c/g} \; \GVel
            &= \dAd[c]_p \; \J[p]_{p/g} \; \GVel
            + \Ad[c]_p \; \dJ[p]_{p/g} \; \GVel
            + \Ad[c]_n \; \dJ[n]_{n/r} \; \GVel_j \\

            \dJ[c]_{c/g}
            &= \dAd[c]_p \; \J[p]_{p/g} + \Ad[c]_p \; \dJ[p]_{p/g} +
            \begin{bmatrix}
            0 & \cdots & 0 & (\Ad[c]_n \; \dJ[n]_{n/r}) & 0 & \cdots & 0
            \end{bmatrix}

        with

        .. math::
            \dAd[c]_p &= \Ad[c]_n \; \dAd[n]_r \; \Ad[r]_p

        and where `\dAd[n]_r` and `\dJ[n]_{n/r}` are respectively given by
        the joint :attr:`~arboris.core.Joint.idadjoint` and
        :attr:`~arboris.core.Joint.djacobian` attributes.

        T_ab: velocity of {a} relative to {b} expressed in {a} (body twist)
        """
        self._pose = pose
        self._jacobian = jac
        self._djacobian = djac
        self._twist = twist
        wx = array(
            [[             0, -self.twist[2],  self.twist[1]],
             [ self.twist[2],              0, -self.twist[0]],
             [-self.twist[1],  self.twist[0],              0]])
        if self.mass[3, 3] <= 1e-10: #TODO: avoid hardcoded value
            rx = zeros((3, 3))
        else:
            rx = self.mass[0:3, 3:6]/self.mass[3,3] #TODO: better solution?
        self._nleffects = zeros((6, 6))
        self._nleffects[0:3, 0:3] = wx
        self._nleffects[3:6, 3:6] = wx
        self._nleffects[0:3, 3:6] = dot(rx, wx) - dot(wx, rx)
        self._nleffects = dot(self.nleffects, self.mass)

        H_gp = pose
        J_pg = jac
        dJ_pg = djac
        T_pg = twist
        for j in self.childrenjoints:
            H_cn = j._frame1.bpose
            H_pr = j._frame0.bpose
            H_rn = j.pose
            H_pc = dot(H_pr, dot(H_rn, Hg.inv(H_cn)))
            child_pose = dot(H_gp, H_pc)
            Ad_cp = Hg.iadjoint(H_pc)
            Ad_cn = Hg.adjoint(H_cn)
            Ad_rp = Hg.adjoint(Hg.inv(H_pr))
            dAd_nr = j.idadjoint
            dAd_cp = dot(Ad_cn, dot(dAd_nr, Ad_rp))
            T_nr = j.twist
            J_nr = j.jacobian
            dJ_nr = j.djacobian
            child_twist = dot(Ad_cp, T_pg) + dot(Ad_cn, T_nr)
            child_jac = dot(Ad_cp, J_pg)
            child_jac[:,j.dof] += dot(Ad_cn, J_nr)

            child_djac = dot(dAd_cp, J_pg) + dot(Ad_cp, dJ_pg)
            child_djac[:, j.dof] += dot(Ad_cn, dJ_nr)
            j._frame1.body.update_dynamic(child_pose, child_jac, child_djac,
                                          child_twist)
Exemple #21
0
def _human36(world, height=1.741, mass=73, name=''):
    """

    TODO: HuMAnS' doc about inertia is erroneous (the real math is in the IOMatrix proc in DynamicData.maple)

    """
    assert isinstance(world, World)
    w = world
    L = anatomical_lengths(height)
    
    bodies = {}
    humansbodyid_to_humansbodyname_map = {}
    for b in _humans_bodies(height, mass):

        #mass matrix at com
        mass_g = b['Mass'] * diag(
            hstack((b['GyrationRadius']**2, (1,1,1))))
        H_fg = eye(4)
        H_fg[0:3,3] = b['CenterOfMass']
        H_gf = Hg.inv(H_fg)
        #mass matrix at body's frame origin:
        mass_o = dot(adjoint(H_gf).T, dot(mass_g, adjoint(H_gf)))
        
        bodies[b['HumansName']] = Body(
            name=b['HumansName'],
            mass=mass_o)
        
        humansbodyid_to_humansbodyname_map[b['HumansId']] = b['HumansName']

    rf = SubFrame(w.ground,
        Hg.transl(0, L['yfootL']+L['ytibiaL']+L['yfemurL'], 0))
    w.add_link(rf, FreeJoint(), bodies['LPT'])
    
    rf = SubFrame(bodies['LPT'], Hg.transl(0, 0, L['zhip']/2.))
    j = RzRyRxJoint()
    w.add_link(rf, j, bodies['ThighR'])
    
    rf = SubFrame(bodies['ThighR'], Hg.transl(0, -L['yfemurR'], 0))
    w.add_link(rf, RzJoint(), bodies['ShankR'])
    
    rf = SubFrame(bodies['ShankR'], Hg.transl(0, -L['ytibiaR'], 0))
    w.add_link(rf, RzRxJoint(), bodies['FootR'])

    rf = SubFrame(bodies['LPT'], Hg.transl(0, 0, -L['zhip']/2.))
    w.add_link(rf, RzRyRxJoint(), bodies['ThighL'])

    rf = SubFrame(bodies['ThighL'], Hg.transl(0, -L['yfemurL'], 0))
    w.add_link(rf, RzJoint(), bodies['ShankL'])

    rf = SubFrame(bodies['ShankL'], Hg.transl(0, -L['ytibiaL'], 0))
    w.add_link(rf, RzRxJoint(), bodies['FootL'])

    rf = SubFrame(bodies['LPT'], Hg.transl(-L['xvT10'], L['yvT10'], 0))
    w.add_link(rf, RzRyRxJoint(), bodies['UPT'])
    
    rf = SubFrame(bodies['UPT'], 
        Hg.transl(L['xsternoclavR'], L['ysternoclavR'], L['zsternoclavR']))
    j = RyRxJoint()
    w.add_link(rf, j, bodies['ScapulaR'])
    
    rf = SubFrame(bodies['ScapulaR'], 
        Hg.transl(-L['xshoulderR'], L['yshoulderR'], L['zshoulderR']))
    w.add_link(rf, RzRyRxJoint(), bodies['ArmR'])

    rf = SubFrame(bodies['ArmR'], Hg.transl(0, -L['yhumerusR'], 0))
    w.add_link(rf, RzRyJoint(), bodies['ForearmR'])
    
    rf = SubFrame(bodies['ForearmR'], Hg.transl(0, -L['yforearmR'], 0))
    w.add_link(rf, RzRxJoint(), bodies['HandR'])
    
    rf = SubFrame(bodies['UPT'], Hg.transl(
        L['xsternoclavL'], L['ysternoclavL'], -L['zsternoclavL']))
    w.add_link(rf, RyRxJoint(), bodies['ScapulaL'])
    
    rf = SubFrame(bodies['ScapulaL'], 
        Hg.transl(-L['xshoulderL'], L['yshoulderL'], -L['zshoulderL']))
    w.add_link(rf, RzRyRxJoint(), bodies['ArmL'])
    
    rf = SubFrame(bodies['ArmL'], Hg.transl(0, -L['yhumerusL'], 0))
    w.add_link(rf, RzRyJoint(), bodies['ForearmL'])
    
    rf = SubFrame(bodies['ForearmL'], Hg.transl(0, -L['yforearmL'], 0))
    w.add_link(rf, RzRxJoint(), bodies['HandL'])
    
    rf = SubFrame(bodies['UPT'], Hg.transl(L['xvT10'], L['yvC7'], 0))
    w.add_link(rf, RzRyRxJoint(), bodies['Head'])

    # add tags
    tags = {}
    for t in _humans_tags(height):
        bodyname = humansbodyid_to_humansbodyname_map[t['HumansBodyId']]
        tag = SubFrame(
            bodies[bodyname],
            Hg.transl(t['Position'][0], t['Position'][1], t['Position'][2]),
            t['HumansName'])
        tags[t['HumansName']] = tag
        w.register(tag)

    # Add point shapes to the feet
    for k in ('Right foot toe tip', 'Right foot heel',
             'Right foot phalange 5', 'Right foot Phalange 1',
             'Left foot toe tip','Left foot heel',
              'Left foot phalange 5','Left foot phalange 1'):
        shape = Point(tags[k], name=k)
        w.register(shape)

    w.init()
    return (bodies, tags)
Exemple #22
0
    from arboris.homogeneousmatrix import transl
    H_bc = transl(1,1,1)
else:
    H_bc = eye(4)
lengths = (1.,1.,1.)
mass = 1.
body = Body(
        name='box_body',
        mass=massmatrix.transport(massmatrix.box(lengths, mass), H_bc))
subframe = SubFrame(body, H_bc, name="box_com")

if True:
    twist_c = array([0.,0.,0.,0.,0.,0.])
else:
    twist_c = array([1,1,1,0,0,0.])
twist_b = dot(homogeneousmatrix.adjoint(H_bc), twist_c)
freejoint = FreeJoint(gpos=homogeneousmatrix.inv(H_bc), gvel=twist_b)
w.add_link(w.ground, freejoint, body)
w.register(Box(subframe, lengths))


weightc = WeightController(w)       
w.register(weightc)
obs = TrajLog(w.getframes()['box_com'], w)
w.observers.append(obs)

from arboris.visu_osg import Drawer
w.observers.append(Drawer(w))

timeline = arange(0,1,5e-3)
simulate(w, timeline)
 def jacobian(self):
     H_01 = dot(Hg.inv(self._frames[0].pose), self._frames[1].pose)
     return (dot(Hg.adjoint(H_01)[2:6,:], self._frames[1].jacobian)
             -self._frames[0].jacobian[2:6,:])