def _extract_collision_shapes_data(self): """ """ cs = self.collision_shapes sdist = zeros(len(cs)) svel = zeros(len(cs)) J = zeros((len(cs), self.ndof)) dJ = zeros((len(cs), self.ndof)) for i in arange(len(self.collision_shapes)): sdist[i], Hgc0, Hgc1 = cs[i][1](cs[i][0]) sdist[i] -= self.options['avoidance margin'] f0, f1 = cs[i][0][0].frame, cs[i][0][1].frame Hf0c0, Hf1c1 = dot(inv(f0.pose), Hgc0), dot(inv(f1.pose), Hgc1) tf0_g_f0, tf1_g_f1 = f0.twist, f1.twist Adc0f0, Adc1f1 = adjoint(inv(Hf0c0)), adjoint(inv(Hf1c1)) tc0_g_c0, tc1_g_c1 = dot(Adc0f0, tf0_g_f0), dot(Adc1f1, tf1_g_f1) Jc0, Jc1 = dot(Adc0f0, f0.jacobian), dot(Adc1f1, f1.jacobian) #as Tc_f_c = 0, no motion between the 2 frames because same body dJc0, dJc1 = dot(Adc0f0, f0.jacobian), dot(Adc1f1, f1.jacobian) svel[i] = tc1_g_c1[5] - tc0_g_c0[5] dJ[i, :] = dJc1[5] - dJc0[5] if f1.body in self.bodies: J[i, :] += Jc1[5] if f0.body in self.bodies: J[i, :] -= Jc0[5] return sdist, svel, J, dJ
def add_body(name, mass, com_position, gyration_radius): #mass matrix at com mass_g = mass * diag(hstack((gyration_radius**2, (1, 1, 1)))) H_fg = eye(4) H_fg[0:3, 3] = com_position H_gf = Hg.inv(H_fg) #mass matrix at body's frame origin: mass_o = dot(Hg.adjoint(H_gf).T, dot(mass_g, Hg.adjoint(H_gf))) bodies.append(Body(name=prefix+name, mass=mass_o))
def add_body(name, mass, com_position, gyration_radius): #mass matrix at com mass_g = mass * diag(hstack((gyration_radius**2, (1, 1, 1)))) H_fg = eye(4) H_fg[0:3, 3] = com_position H_gf = Hg.inv(H_fg) #mass matrix at body's frame origin: mass_o = dot(Hg.adjoint(H_gf).T, dot(mass_g, Hg.adjoint(H_gf))) bodies.append(Body(name=prefix + name, mass=mass_o))
def _update_Jc(self): """ Extract the Jacobian and dJacobian matrix of contact points. """ self.Jc[:] = 0. self.dJc[:] = 0. i = 0 for c in self.constraints: if c.is_enabled() and c.is_active() and self.is_enabled[c]: frame0, frame1 = c._frames[0], c._frames[1] if isinstance(c, PointContact): self.dJc[3*i:(3*(i+1)), :] = frame1.djacobian[3:6] - \ frame0.djacobian[3:6] if frame1.body in self.bodies: self.Jc [3*i:(3*(i+1)), :] += frame1.jacobian[3:6] if frame0.body in self.bodies: self.Jc [3*i:(3*(i+1)), :] -= frame0.jacobian[3:6] elif isinstance(c, BallAndSocketConstraint): H1_0 = dot(inv(frame1.pose), frame0.pose) Ad1_0 = adjoint(H1_0) Ad0_1 = iadjoint(H1_0) T0_g_0 = frame0.twist T1_g_1 = frame1.twist T1_g_0 = dot(Ad0_1, T1_g_1) T0_1_0 = T0_g_0 - T1_g_0 J0 = dot(Ad1_0, frame0.jacobian) J1 = frame1.jacobian dJ0 = dot(Ad1_0, frame0.djacobian) + \ dot(dAdjoint(Ad1_0, T0_1_0), frame0.jacobian) dJ1 = frame1.djacobian self.Jc[3*i:(3*(i+1)), :] = (J1[3:6] - J0[3:6]) self.dJc[3*i:(3*(i+1)), :] = (dJ1[3:6] - dJ0[3:6]) i += 1
def _update_Jc(self): """ Extract the Jacobian and dJacobian matrix of contact points. """ self.Jc[:] = 0. self.dJc[:] = 0. i = 0 for c in self.constraints: if c.is_enabled() and c.is_active() and self.is_enabled[c]: frame0, frame1 = c._frames[0], c._frames[1] if isinstance(c, PointContact): self.dJc[3*i:(3*(i+1)), :] = frame1.djacobian[3:6] - \ frame0.djacobian[3:6] if frame1.body in self.bodies: self.Jc[3 * i:(3 * (i + 1)), :] += frame1.jacobian[3:6] if frame0.body in self.bodies: self.Jc[3 * i:(3 * (i + 1)), :] -= frame0.jacobian[3:6] elif isinstance(c, BallAndSocketConstraint): H1_0 = dot(inv(frame1.pose), frame0.pose) Ad1_0 = adjoint(H1_0) Ad0_1 = iadjoint(H1_0) T0_g_0 = frame0.twist T1_g_1 = frame1.twist T1_g_0 = dot(Ad0_1, T1_g_1) T0_1_0 = T0_g_0 - T1_g_0 J0 = dot(Ad1_0, frame0.jacobian) J1 = frame1.jacobian dJ0 = dot(Ad1_0, frame0.djacobian) + \ dot(dAdjoint(Ad1_0, T0_1_0), frame0.jacobian) dJ1 = frame1.djacobian self.Jc[3 * i:(3 * (i + 1)), :] = (J1[3:6] - J0[3:6]) self.dJc[3 * i:(3 * (i + 1)), :] = (dJ1[3:6] - dJ0[3:6]) i += 1
def update(self, dt): r""" This method calls the collision solver and updates the constraint status and the contact frames poses accordingly. The two frames have the same orientation, with the contact normal along the `z`-axis """ (sdist, H_gc0, H_gc1) = self._collision_solver(self._shapes) H_b0g = Hg.inv(self._shapes[0].frame.body.pose) H_b1g = Hg.inv(self._shapes[1].frame.body.pose) self._frames[0].bpose = dot(H_b0g, H_gc0) self._frames[1].bpose = dot(H_b1g, H_gc1) H_c0c1 = dot(Hg.inv(H_gc0), H_gc1) dsdist = (dot(Hg.adjoint(H_c0c1)[5, :], self._frames[1].twist) - self._frames[0].twist[5]) self._is_active = (sdist + dsdist * dt < self._proximity) self._sdist = sdist self._force[:] = 0.
def update(self, dt): r""" This method calls the collision solver and updates the constraint status and the contact frames poses accordingly. The two frames have the same orientation, with the contact normal along the `z`-axis """ (sdist, H_gc0, H_gc1) = self._collision_solver(self._shapes) H_b0g = Hg.inv(self._shapes[0].frame.body.pose) H_b1g = Hg.inv(self._shapes[1].frame.body.pose) self._frames[0].bpose = dot(H_b0g, H_gc0) self._frames[1].bpose = dot(H_b1g, H_gc1) H_c0c1 = dot(Hg.inv(H_gc0), H_gc1) dsdist = (dot(Hg.adjoint(H_c0c1)[5,:], self._frames[1].twist) -self._frames[0].twist[5]) self._is_active = (sdist + dsdist*dt < self._proximity) self._sdist = sdist self._force[:] = 0.
def transport(M, H): """ Transport (express) the mass matrix into another frame. :param M: the mass matrix expressed in the original frame (say, `a`) :type M: (6,6)-array :param H: homogeneous matrix from the new frame (say `b`) to the original one: `H_{ab}` :type H: (4,4)-array :return: the mass matrix expressed in the new frame (say, `b`) :rtype: (6,6)-array **Example:** >>> M_a = diag((3., 2., 4., 1., 1., 1.)) >>> H_ab = Hg.transl(1., 3., 0.) >>> M_b = transport(M_a, H_ab) >>> allclose(M_b, [[ 12., -3., 0., 0., 0., -3.], ... [ -3., 3., 0., 0., 0., 1.], ... [ 0., 0., 14., 3., -1., 0.], ... [ 0., 0., 3., 1., 0., 0.], ... [ 0., 0., -1., 0., 1., 0.], ... [ -3., 1., 0., 0., 0., 1.]]) True >>> ismassmatrix(M_b) True >>> from math import pi >>> H_ab = Hg.rotx(pi/4) >>> M_b = transport(M_a, H_ab) >>> allclose(M_b, [[ 3., 0., 0., 0., 0., 0.], ... [ 0., 3., 1., 0., 0., 0.], ... [ 0., 1., 3., 0., 0., 0.], ... [ 0., 0., 0., 1., 0., 0.], ... [ 0., 0., 0., 0., 1., 0.], ... [ 0., 0., 0., 0., 0., 1.]]) True >>> ismassmatrix(M_b) True """ assert ismassmatrix(M) assert Hg.ishomogeneousmatrix(H) Ad = Hg.adjoint(H) return dot(Ad.T, dot(M, Ad))
def _update_matrices(self, rstate, dt): """ """ H_0_f = self._frame.pose HR_0_f = H_0_f.copy() HR_0_f[0:3, 3] = 0 AdR_0_f = adjoint(HR_0_f) T_f_0_f = self._frame.twist #WARNING: twist relative to its frame T_f_0_0 = dot(AdR_0_f, T_f_0_f) T_f_0_f_only_rot = T_f_0_f.copy() T_f_0_f_only_rot[3:6] = 0. dAdR_0_f = dAdjoint(AdR_0_f, T_f_0_f_only_rot) J = dot(AdR_0_f, self._frame.jacobian) dJ = dot(AdR_0_f, self._frame.djacobian) + \ dot(dAdR_0_f, self._frame.jacobian) gpos = self._frame.pose gvel = T_f_0_0 cmd = self._ctrl.update(gpos, gvel, rstate, dt) self._J[:] = J[self._cdof, :] self._dJ[:] = dJ[self._cdof, :] self._dVdes[:] = cmd[self._cdof]
def iadjoint(self): return Hg.adjoint(self.ipose)
def adjoint(self): return Hg.adjoint(self.pose)
from arboris.homogeneousmatrix import transl H_bc = transl(1, 1, 1) else: H_bc = eye(4) half_extents = (.5, .5, .5) mass = 1. body = Body(name='box_body', mass=massmatrix.transport(massmatrix.box(half_extents, mass), H_bc)) subframe = SubFrame(body, H_bc, name="box_com") if True: twist_c = array([0., 0., 0., 0., 0., 0.]) else: twist_c = array([1, 1, 1, 0, 0, 0.]) twist_b = dot(homogeneousmatrix.adjoint(H_bc), twist_c) freejoint = FreeJoint(gpos=homogeneousmatrix.inv(H_bc), gvel=twist_b) w.add_link(w.ground, freejoint, body) w.register(Box(subframe, half_extents)) weightc = WeightController() w.register(weightc) obs = TrajLog(w.getframes()['box_com'], w) from arboris.visu_osg import Drawer timeline = arange(0, 1, 5e-3) simulate(w, timeline, [obs, Drawer(w)]) time = timeline[:-1] obs.plot_error()
def update_dynamic(self, pose, jac, djac, twist): r""" Compute the body ``pose, jac, djac, twist`` and its children ones. This method (1) sets the body dynamical model (pose, jacobian, hessian and twist) to the values given as argument, (2) computes the dynamical model of the children bodies and (3) call the equivalent method on them. As a result, the dynamical model of all the bodies is computed recursively. :param pose: the body pose relative to the ground: `H_{gb}` :type pose: 4x4 ndarray :param jac: the body jacobian relative to the world (in body frame): `\J[b]_{b/g}` :type jac: 6x(ndof) ndarray :param djac: the derivative of the body jacobian: `\dJ[b]_{b/g}` :param twist: the body twist: `\twist[b]_{b/g}` :type twist: 6 ndarray **Algorithm:** Let's define the following notations: - `g`: the ground body, - `p`: the parent body (which is the present :class:`arboris.Body` instance) - `c`: a child body, - `j`: the joint between the bodies `p` and `c`, - `r`: reference frame of the joint `j`, rigidly fixed to the parent body - `n`: new frame of the joint `j`, rigidly fixed to the child body .. image:: img/body_model.svg :width: 300px One can notice that `H_{nc}` and `H_{pr}` are constant. The child body pose can be computed as .. math:: H_{gc} &= H_{gp} \; H_{pc} \\ &= H_{gp} \; (H_{pr} \; H_{rn} \; H_{nc}) where `H_{rn}` depends on the joint generalized configuration and is given by its :attr:`~arboris.core.Joint.pose` attribute. The chil body twist is given as .. math:: \twist[c]_{c/g} &= \Ad_{cp} \; \twist[p]_{p/g} + \twist[c]_{c/p} \\ &= \Ad_{cp} \; \twist[p]_{p/g} + \Ad_{cn} \; \twist[n]_{n/r} \\ &= \Ad_{cp} \; \J[p]_{p/g} \; \GVel + \Ad_{cn} \; \J[n]_{n/r} \; \GVel_j \\ &= \J[c]_{c/g} \; \GVel where `\twist[n]_{n/r}` is given by the joint :attr:`~arboris.core.Joint.twist` attribute. `\GVel_j` is the generalized velocity of the joint `j` and is related to the world generalized velocity by trivial projection .. math:: \GVel_j &= \begin{bmatrix} 0 & \cdots &0 & I & 0 & \cdots & 0 \end{bmatrix} \; \GVel therefore, the child body jacobian is .. math:: \J[c]_{c/g} &= \Ad_{cp} \; \J[p]_{p/g} + \begin{bmatrix} 0 & \cdots & 0 & \Ad_{cn} \; \J[n]_{n/r} & 0 & \cdots & 0 \end{bmatrix} \\ where `\J[n]_{n/r}` is given by the joint :attr:`~arboris.core.Joint.jacobian` attribute. Derivating the previous expression leads to the child body acceleration: .. math:: \dtwist[c]_{c/g} &= \dAd_{cp} \; \J[p]_{p/g} \; \GVel + \Ad_{cp} \; \dJ[p]_{p/g} \; \GVel + \Ad_{cp} \; \J[p]_g \; \dGVel + \Ad_{cn} \; \dJ[n]_{n/r} \; \GVel_j + \Ad_{cn} \; \J[n]_{m/r} \dGVel_j \\ &= \J[c]_{c/g} \; \dGVel + \dJ[c]_{c/g} \; \GVel the expression of the child body hessian is then obtained by identification: .. math:: \dJ[c]_{c/g} \; \GVel &= \dAd_{cp} \; \J[p]_{p/g} \; \GVel + \Ad_{cp} \; \dJ[p]_{p/g} \; \GVel + \Ad_{cn} \; \dJ[n]_{n/r} \; \GVel_j \\ \dJ[c]_{c/g} &= \dAd_{cp} \; \J[p]_{p/g} + \Ad_{cp} \; \dJ[p]_{p/g} + \begin{bmatrix} 0 & \cdots & 0 & (\Ad_{cn} \; \dJ[n]_{n/r}) & 0 & \cdots & 0 \end{bmatrix} with .. math:: \dAd_{cp} &= \Ad_{cn} \; \dAd_{nr} \; \Ad_{rp} and where `\dAd_{nr}` and `\dJ[n]_{n/r}` are respectively given by the joint :attr:`~arboris.core.Joint.idadjoint` and :attr:`~arboris.core.Joint.djacobian` attributes. T_ab: velocity of {a} relative to {b} expressed in {a} (body twist) """ self._pose = pose self._jacobian = jac self._djacobian = djac self._twist = twist wx = array([[0, -self.twist[2], self.twist[1]], [self.twist[2], 0, -self.twist[0]], [-self.twist[1], self.twist[0], 0]]) if self.mass[5, 5] <= 1e-10: #TODO: avoid hardcoded value rx = zeros((3, 3)) else: rx = self.mass[0:3, 3:6] / self.mass[5, 5] self._nleffects = zeros((6, 6)) self._nleffects[0:3, 0:3] = wx self._nleffects[3:6, 3:6] = wx self._nleffects[0:3, 3:6] = dot(rx, wx) - dot(wx, rx) self._nleffects = dot(self.nleffects, self.mass) H_gp = pose J_pg = jac dJ_pg = djac T_pg = twist for j in self.childrenjoints: H_cn = j.frame1.bpose H_pr = j.frame0.bpose H_rn = j.pose H_pc = dot(H_pr, dot(H_rn, Hg.inv(H_cn))) child_pose = dot(H_gp, H_pc) Ad_cp = Hg.iadjoint(H_pc) Ad_cn = Hg.adjoint(H_cn) Ad_rp = Hg.adjoint(Hg.inv(H_pr)) dAd_nr = j.idadjoint dAd_cp = dot(Ad_cn, dot(dAd_nr, Ad_rp)) T_nr = j.twist J_nr = j.jacobian dJ_nr = j.djacobian child_twist = dot(Ad_cp, T_pg) + dot(Ad_cn, T_nr) child_jac = dot(Ad_cp, J_pg) child_jac[:, j.dof] += dot(Ad_cn, J_nr) child_djac = dot(dAd_cp, J_pg) + dot(Ad_cp, dJ_pg) child_djac[:, j.dof] += dot(Ad_cn, dJ_nr) j.frame1.body.update_dynamic(child_pose, child_jac, child_djac, child_twist)
def jacobian(self): H_01 = dot(Hg.inv(self._frames[0].pose), self._frames[1].pose) return (dot(Hg.adjoint(H_01)[2:6, :], self._frames[1].jacobian) - self._frames[0].jacobian[2:6, :])
print("H_o_b * H_b_o\n", np.dot(H_o_b, H_b_o)) isHM =Hg.ishomogeneousmatrix(H_o_b) # check validity of homogeneous matrix print("is homogeneous matrix?", isHM) p_b = np.array([.4,.5,.6]) # point p expressed in frame {b} p_o = Hg.pdot(H_o_b, p_b) # point p expressed in frame {o} v_b = np.array([.4,.5,.6]) # idem for vector, here affine part is not v_o = Hg.vdot(H_o_b, v_b) # taken into account Ad_o_b = Hg.adjoint(H_o_b) # to obtain the adjoint related to displacement Ad_b_o = Hg.iadjoint(H_o_b) # to obtain the adjoint of the inverse ##### About adjoint matrix ##################################################### import arboris.adjointmatrix as Adm isAd = Adm.isadjointmatrix(Ad_b_o) # check validity of adjoint matrix print("is adjoint matrix?", isAd) Ad_b_o = Adm.inv(Ad_o_b) # get inverse of adjoint matrix
def update_dynamic(self, pose, jac, djac, twist): r"""Sets the body ``pose, jac, djac, twist`` and computes its children ones. This method (1) sets the body dynamical model (pose, jacobian, hessian and twist) to the values given as argument, (2) computes the dynamical model of the children bodies and (3) call the equivalent method on them. As a result, the dynamical model of all the bodies is computed recursively. :param pose: the body pose relative to the ground: `H_{gb}` :type pose: 4x4 ndarray :param jac: the body jacobian relative to the world (in body frame): `\J[b]_{b/g}` :type jac: 6x(ndof) ndarray :param djac: the derivative of the body jacobian: `\dJ[b]_{b/g}` :param twist: the body twist: `\twist[b]_{b/g}` :type twist: 6 ndarray **Algorithm:** Let's define the following notations: - `g`: the ground body, - `p`: the parent body (which is the present :class:`arboris.Body` instance) - `c`: a child body, - `j`: the joint between the bodies `p` and `c`, - `r`: reference frame of the joint `j`, rigidly fixed to the parent body - `n`: new frame of the joint `j`, rigidly fixed to the child body .. image:: img/body_model.png One can notice that `H_{nc}` and `H_{pr}` are constant. The child body pose can be computed as .. math:: H_{gc} &= H_{gp} \; H_{pc} \\ &= H_{gp} \; (H_{pr} \; H_{rn} \; H_{nc}) where `H_{rn}` depends on the joint generalized configuration and is given by its :attr:`~arboris.core.Joint.pose` attribute. The chil body twist is given as .. math:: \twist[c]_{c/g} &= \Ad[c]_p \; \twist[p]_{p/g} + \twist[c]_{c/p} \\ &= \Ad[c]_p \; \twist[p]_{p/g} + \Ad[c]_n \; \twist[n]_{n/r} \\ &= \Ad[c]_p \; \J[p]_{p/g} \; \GVel + \Ad[c]_n \; \J[n]_{n/r} \; \GVel_j \\ &= \J[c]_{c/g} \; \GVel where `\twist[n]_{n/r}` isgiven by the joint :attr:`~arboris.core.Joint.twist` attribute. \GVel_j is the generalized velocity of the joint `j` and is related to the world generalized velocity by trivial projection .. math:: \GVel_j &= \begin{bmatrix} 0 & \cdots &0 & I & 0 & \cdots & 0 \end{bmatrix} \; \GVel therefore, the child body jacobian is .. math:: \J[c]_{c/g} &= \Ad[c]_p \; \J[p]_{p/g} + \begin{bmatrix} 0 & \cdots & 0 & \Ad[c]_n \; \J[n]_{n/r} & 0 & \cdots & 0 \end{bmatrix} \\ where `\J[n]_{n/r}` is given by the joint :attr:`~arboris.core.Joint.jacobian` attribute. Derivating the previous expression leads to the child body acceleration: .. math:: \dtwist[c]_{c/g} &= \dAd[c]_p \; \J[p]_{p/g} \; \GVel + \Ad[c]_p \; \dJ[p]_{p/g} \; \GVel + \Ad[c]_p \; \J[p]_g \; \dGVel + \Ad[c]_n \; \dJ[n]_{n/r} \; \GVel_j + \Ad[c]_n \; \J[n]_{m/r} \dGVel_j \\ &= \J[c]_{c/g} \; \dGVel + \dJ[c]_{c/g} \; \GVel the expression of the child body hessian is then obtained by identification: .. math:: \dJ[c]_{c/g} \; \GVel &= \dAd[c]_p \; \J[p]_{p/g} \; \GVel + \Ad[c]_p \; \dJ[p]_{p/g} \; \GVel + \Ad[c]_n \; \dJ[n]_{n/r} \; \GVel_j \\ \dJ[c]_{c/g} &= \dAd[c]_p \; \J[p]_{p/g} + \Ad[c]_p \; \dJ[p]_{p/g} + \begin{bmatrix} 0 & \cdots & 0 & (\Ad[c]_n \; \dJ[n]_{n/r}) & 0 & \cdots & 0 \end{bmatrix} with .. math:: \dAd[c]_p &= \Ad[c]_n \; \dAd[n]_r \; \Ad[r]_p and where `\dAd[n]_r` and `\dJ[n]_{n/r}` are respectively given by the joint :attr:`~arboris.core.Joint.idadjoint` and :attr:`~arboris.core.Joint.djacobian` attributes. T_ab: velocity of {a} relative to {b} expressed in {a} (body twist) """ self._pose = pose self._jacobian = jac self._djacobian = djac self._twist = twist wx = array( [[ 0, -self.twist[2], self.twist[1]], [ self.twist[2], 0, -self.twist[0]], [-self.twist[1], self.twist[0], 0]]) if self.mass[3, 3] <= 1e-10: #TODO: avoid hardcoded value rx = zeros((3, 3)) else: rx = self.mass[0:3, 3:6]/self.mass[3,3] #TODO: better solution? self._nleffects = zeros((6, 6)) self._nleffects[0:3, 0:3] = wx self._nleffects[3:6, 3:6] = wx self._nleffects[0:3, 3:6] = dot(rx, wx) - dot(wx, rx) self._nleffects = dot(self.nleffects, self.mass) H_gp = pose J_pg = jac dJ_pg = djac T_pg = twist for j in self.childrenjoints: H_cn = j._frame1.bpose H_pr = j._frame0.bpose H_rn = j.pose H_pc = dot(H_pr, dot(H_rn, Hg.inv(H_cn))) child_pose = dot(H_gp, H_pc) Ad_cp = Hg.iadjoint(H_pc) Ad_cn = Hg.adjoint(H_cn) Ad_rp = Hg.adjoint(Hg.inv(H_pr)) dAd_nr = j.idadjoint dAd_cp = dot(Ad_cn, dot(dAd_nr, Ad_rp)) T_nr = j.twist J_nr = j.jacobian dJ_nr = j.djacobian child_twist = dot(Ad_cp, T_pg) + dot(Ad_cn, T_nr) child_jac = dot(Ad_cp, J_pg) child_jac[:,j.dof] += dot(Ad_cn, J_nr) child_djac = dot(dAd_cp, J_pg) + dot(Ad_cp, dJ_pg) child_djac[:, j.dof] += dot(Ad_cn, dJ_nr) j._frame1.body.update_dynamic(child_pose, child_jac, child_djac, child_twist)
def _human36(world, height=1.741, mass=73, name=''): """ TODO: HuMAnS' doc about inertia is erroneous (the real math is in the IOMatrix proc in DynamicData.maple) """ assert isinstance(world, World) w = world L = anatomical_lengths(height) bodies = {} humansbodyid_to_humansbodyname_map = {} for b in _humans_bodies(height, mass): #mass matrix at com mass_g = b['Mass'] * diag( hstack((b['GyrationRadius']**2, (1,1,1)))) H_fg = eye(4) H_fg[0:3,3] = b['CenterOfMass'] H_gf = Hg.inv(H_fg) #mass matrix at body's frame origin: mass_o = dot(adjoint(H_gf).T, dot(mass_g, adjoint(H_gf))) bodies[b['HumansName']] = Body( name=b['HumansName'], mass=mass_o) humansbodyid_to_humansbodyname_map[b['HumansId']] = b['HumansName'] rf = SubFrame(w.ground, Hg.transl(0, L['yfootL']+L['ytibiaL']+L['yfemurL'], 0)) w.add_link(rf, FreeJoint(), bodies['LPT']) rf = SubFrame(bodies['LPT'], Hg.transl(0, 0, L['zhip']/2.)) j = RzRyRxJoint() w.add_link(rf, j, bodies['ThighR']) rf = SubFrame(bodies['ThighR'], Hg.transl(0, -L['yfemurR'], 0)) w.add_link(rf, RzJoint(), bodies['ShankR']) rf = SubFrame(bodies['ShankR'], Hg.transl(0, -L['ytibiaR'], 0)) w.add_link(rf, RzRxJoint(), bodies['FootR']) rf = SubFrame(bodies['LPT'], Hg.transl(0, 0, -L['zhip']/2.)) w.add_link(rf, RzRyRxJoint(), bodies['ThighL']) rf = SubFrame(bodies['ThighL'], Hg.transl(0, -L['yfemurL'], 0)) w.add_link(rf, RzJoint(), bodies['ShankL']) rf = SubFrame(bodies['ShankL'], Hg.transl(0, -L['ytibiaL'], 0)) w.add_link(rf, RzRxJoint(), bodies['FootL']) rf = SubFrame(bodies['LPT'], Hg.transl(-L['xvT10'], L['yvT10'], 0)) w.add_link(rf, RzRyRxJoint(), bodies['UPT']) rf = SubFrame(bodies['UPT'], Hg.transl(L['xsternoclavR'], L['ysternoclavR'], L['zsternoclavR'])) j = RyRxJoint() w.add_link(rf, j, bodies['ScapulaR']) rf = SubFrame(bodies['ScapulaR'], Hg.transl(-L['xshoulderR'], L['yshoulderR'], L['zshoulderR'])) w.add_link(rf, RzRyRxJoint(), bodies['ArmR']) rf = SubFrame(bodies['ArmR'], Hg.transl(0, -L['yhumerusR'], 0)) w.add_link(rf, RzRyJoint(), bodies['ForearmR']) rf = SubFrame(bodies['ForearmR'], Hg.transl(0, -L['yforearmR'], 0)) w.add_link(rf, RzRxJoint(), bodies['HandR']) rf = SubFrame(bodies['UPT'], Hg.transl( L['xsternoclavL'], L['ysternoclavL'], -L['zsternoclavL'])) w.add_link(rf, RyRxJoint(), bodies['ScapulaL']) rf = SubFrame(bodies['ScapulaL'], Hg.transl(-L['xshoulderL'], L['yshoulderL'], -L['zshoulderL'])) w.add_link(rf, RzRyRxJoint(), bodies['ArmL']) rf = SubFrame(bodies['ArmL'], Hg.transl(0, -L['yhumerusL'], 0)) w.add_link(rf, RzRyJoint(), bodies['ForearmL']) rf = SubFrame(bodies['ForearmL'], Hg.transl(0, -L['yforearmL'], 0)) w.add_link(rf, RzRxJoint(), bodies['HandL']) rf = SubFrame(bodies['UPT'], Hg.transl(L['xvT10'], L['yvC7'], 0)) w.add_link(rf, RzRyRxJoint(), bodies['Head']) # add tags tags = {} for t in _humans_tags(height): bodyname = humansbodyid_to_humansbodyname_map[t['HumansBodyId']] tag = SubFrame( bodies[bodyname], Hg.transl(t['Position'][0], t['Position'][1], t['Position'][2]), t['HumansName']) tags[t['HumansName']] = tag w.register(tag) # Add point shapes to the feet for k in ('Right foot toe tip', 'Right foot heel', 'Right foot phalange 5', 'Right foot Phalange 1', 'Left foot toe tip','Left foot heel', 'Left foot phalange 5','Left foot phalange 1'): shape = Point(tags[k], name=k) w.register(shape) w.init() return (bodies, tags)
from arboris.homogeneousmatrix import transl H_bc = transl(1,1,1) else: H_bc = eye(4) lengths = (1.,1.,1.) mass = 1. body = Body( name='box_body', mass=massmatrix.transport(massmatrix.box(lengths, mass), H_bc)) subframe = SubFrame(body, H_bc, name="box_com") if True: twist_c = array([0.,0.,0.,0.,0.,0.]) else: twist_c = array([1,1,1,0,0,0.]) twist_b = dot(homogeneousmatrix.adjoint(H_bc), twist_c) freejoint = FreeJoint(gpos=homogeneousmatrix.inv(H_bc), gvel=twist_b) w.add_link(w.ground, freejoint, body) w.register(Box(subframe, lengths)) weightc = WeightController(w) w.register(weightc) obs = TrajLog(w.getframes()['box_com'], w) w.observers.append(obs) from arboris.visu_osg import Drawer w.observers.append(Drawer(w)) timeline = arange(0,1,5e-3) simulate(w, timeline)
def jacobian(self): H_01 = dot(Hg.inv(self._frames[0].pose), self._frames[1].pose) return (dot(Hg.adjoint(H_01)[2:6,:], self._frames[1].jacobian) -self._frames[0].jacobian[2:6,:])