def update_geometric(self, pose): r""" :param pose: current pose of the body, relative to the ground :type pose: (4,4)-array - g: ground body - p: parent body - c: child body - r: reference frame of the joint, rigidly fixed to the parent body - n: new frame of the joint, rigidly fixed to the child body so H_nc and H_pr are constant. .. math:: H_gc &= H_{gp} \ H_{pc} \\ &= H_{gp} \ (H_{pr} \ H_{rn} \ H_{nc}) """ self._pose = pose H_gp = pose for j in self.childrenjoints: H_cn = j.frame1.bpose H_pr = j.frame0.bpose H_rn = j.pose H_pc = dot(H_pr, dot(H_rn, Hg.inv(H_cn))) child_pose = dot(H_gp, H_pc) j.frame1.body.update_geometric(child_pose)
def add_body(name, mass, com_position, gyration_radius): #mass matrix at com mass_g = mass * diag(hstack((gyration_radius**2, (1, 1, 1)))) H_fg = eye(4) H_fg[0:3, 3] = com_position H_gf = Hg.inv(H_fg) #mass matrix at body's frame origin: mass_o = dot(Hg.adjoint(H_gf).T, dot(mass_g, Hg.adjoint(H_gf))) bodies.append(Body(name=prefix+name, mass=mass_o))
def update(self, dt): r""" This method calls the collision solver and updates the constraint status and the contact frames poses accordingly. The two frames have the same orientation, with the contact normal along the `z`-axis """ (sdist, H_gc0, H_gc1) = self._collision_solver(self._shapes) H_b0g = Hg.inv(self._shapes[0].frame.body.pose) H_b1g = Hg.inv(self._shapes[1].frame.body.pose) self._frames[0].bpose = dot(H_b0g, H_gc0) self._frames[1].bpose = dot(H_b1g, H_gc1) H_c0c1 = dot(Hg.inv(H_gc0), H_gc1) dsdist = (dot(Hg.adjoint(H_c0c1)[5, :], self._frames[1].twist) - self._frames[0].twist[5]) self._is_active = (sdist + dsdist * dt < self._proximity) self._sdist = sdist self._force[:] = 0.
def update(self, dt): r""" This method calls the collision solver and updates the constraint status and the contact frames poses accordingly. The two frames have the same orientation, with the contact normal along the `z`-axis """ (sdist, H_gc0, H_gc1) = self._collision_solver(self._shapes) H_b0g = Hg.inv(self._shapes[0].frame.body.pose) H_b1g = Hg.inv(self._shapes[1].frame.body.pose) self._frames[0].bpose = dot(H_b0g, H_gc0) self._frames[1].bpose = dot(H_b1g, H_gc1) H_c0c1 = dot(Hg.inv(H_gc0), H_gc1) dsdist = (dot(Hg.adjoint(H_c0c1)[5,:], self._frames[1].twist) -self._frames[0].twist[5]) self._is_active = (sdist + dsdist*dt < self._proximity) self._sdist = sdist self._force[:] = 0.
def add_body(name, mass, com_position, gyration_radius): #mass matrix at com mass_g = mass * diag(hstack((gyration_radius**2, (1, 1, 1)))) H_fg = eye(4) H_fg[0:3, 3] = com_position H_gf = Hg.inv(H_fg) #mass matrix at body's frame origin: mass_o = dot(Hg.adjoint(H_gf).T, dot(mass_g, Hg.adjoint(H_gf))) bodies.append(Body(name=prefix + name, mass=mass_o))
def _plane_sphere_collision(H_g0, coeffs0, p_g1, radius1): """ Get information on plane/sphere collision. :param H_g0: pose of the center of the plane relative to the ground :type H_g0: (4,4)-array :param coeffs0: coefficients from the plane equation :type coeffs0: (4,)-array :param p_g1: position of center of the sphere relative to the ground :type p_g1: (3,)-array :param float radius1: radius of the sphere :return: a tuple (*sdist*, *H_gc0*, *H_gc1*) with: * *sdist*: the minimal distance between the plane and the sphere * *H_gc0*: the pose from the ground to the closest contact point on plane 0 (normal along z) * *H_gc1*: the pose from the ground to the closest contact point on sphere 1 (normal along z) .. image:: img/plane_sphere_collision.svg :width: 300px **Tests:** >>> from numpy import array, eye >>> H_g0 = eye(4) >>> coeffs0 = array([0., 1., 0., -5.]) >>> r1 = 0.1 >>> p_g1 = array([2., 4., 3.]) >>> (sdist, H_gc0, H_gc1) = _plane_sphere_collision(H_g0, coeffs0, p_g1, r1) >>> print sdist 8.9 >>> print H_gc0 [[ 0. 1. 0. 2.] [-0. 0. 1. -5.] [ 1. -0. 0. 3.] [ 0. 0. 0. 1.]] >>> print H_gc1 [[ 0. 1. 0. 2. ] [-0. 0. 1. 3.9] [ 1. -0. 0. 3. ] [ 0. 0. 0. 1. ]] """ assert Hg.ishomogeneousmatrix(H_g0) assert norm(coeffs0[0:3]) == 1. assert radius1 >= 0. normal = coeffs0[0:3] # the plane normal p_01 = Hg.pdot(Hg.inv(H_g0), p_g1) csdist = dot(normal, p_01) - coeffs0[3] # signed distance from the center sdist = csdist - radius1 H_gc0 = Hg.zaligned(normal) H_gc0[0:3, 3] = p_01 - csdist * normal H_gc1 = H_gc0.copy() H_gc1[0:3, 3] = p_01 - sign(sdist) * radius1 * normal return (sdist, H_gc0, H_gc1)
def _plane_sphere_collision(H_g0, coeffs0, p_g1, radius1): """ :param H_g0: pose of the plane `H_{g0}` :type H_g0: (4,4) array :param coeffs0: coefficients from the plane equation :type coeffs0: (4,) array :param p_g1: center of the sphere :type p_g1: (3,) array :param radius1: radius of the sphere :type radius1: float **Tests:** >>> from numpy import array, eye >>> H_g0 = eye(4) >>> coeffs0 = array([0., 1., 0., -5.]) >>> r1 = 0.1 >>> p_g1 = array([2., 4., 3.]) >>> (sdist, H_gc0, H_gc1) = _plane_sphere_collision(H_g0, coeffs0, p_g1, r1) >>> print sdist 8.9 >>> print H_gc0 [[ 0. 1. 0. 2.] [-0. 0. 1. -5.] [ 1. -0. 0. 3.] [ 0. 0. 0. 1.]] >>> print H_gc1 [[ 0. 1. 0. 2. ] [-0. 0. 1. 3.9] [ 1. -0. 0. 3. ] [ 0. 0. 0. 1. ]] """ assert Hg.ishomogeneousmatrix(H_g0) assert norm(coeffs0[0:3]) == 1. assert radius1 >= 0. normal = coeffs0[0:3] # the plane normal p_01 = Hg.pdot(Hg.inv(H_g0), p_g1) csdist = dot(normal, p_01) - coeffs0[3] # signed distance from the center sdist = csdist - radius1 H_gc0 = Hg.zaligned(normal) H_gc0[0:3,3] = p_01 - csdist * normal H_gc1 = H_gc0.copy() H_gc1[0:3,3] = p_01 - sign(sdist) * radius1 * normal return (sdist, H_gc0, H_gc1)
def _plane_sphere_collision(H_g0, coeffs0, p_g1, radius1): """ :param H_g0: pose of the plane `H_{g0}` :type H_g0: (4,4) array :param coeffs0: coefficients from the plane equation :type coeffs0: (4,) array :param p_g1: center of the sphere :type p_g1: (3,) array :param radius1: radius of the sphere :type radius1: float **Tests:** >>> from numpy import array, eye >>> H_g0 = eye(4) >>> coeffs0 = array([0., 1., 0., -5.]) >>> r1 = 0.1 >>> p_g1 = array([2., 4., 3.]) >>> (sdist, H_gc0, H_gc1) = _plane_sphere_collision(H_g0, coeffs0, p_g1, r1) >>> print sdist 8.9 >>> print H_gc0 [[ 0. 1. 0. 2.] [-0. 0. 1. -5.] [ 1. -0. 0. 3.] [ 0. 0. 0. 1.]] >>> print H_gc1 [[ 0. 1. 0. 2. ] [-0. 0. 1. 3.9] [ 1. -0. 0. 3. ] [ 0. 0. 0. 1. ]] """ assert Hg.ishomogeneousmatrix(H_g0) assert norm(coeffs0[0:3]) == 1. assert radius1 >= 0. normal = coeffs0[0:3] # the plane normal p_01 = Hg.pdot(Hg.inv(H_g0), p_g1) csdist = dot(normal, p_01) - coeffs0[3] # signed distance from the center sdist = csdist - radius1 H_gc0 = Hg.zaligned(normal) H_gc0[0:3, 3] = p_01 - csdist * normal H_gc1 = H_gc0.copy() H_gc1[0:3, 3] = p_01 - sign(sdist) * radius1 * normal return (sdist, H_gc0, H_gc1)
def update(self, dt): r""" Compute the predicted relative position error between the socket and ball centers, `p_{01}(t)` and save it in ``self._pos0``. .. math:: H_{01}(t) &= \left(H_{g0}(t)\right)^{-1} \; H_{g1}(t) \\ H_{01}(t) &= \begin{bmatrix} R_{01}(t) & p_{01}(t) \\ 0 & 1 \end{bmatrix} """ H_01 = dot(Hg.inv(self._frames[0].pose), self._frames[1].pose) self._pos0 = H_01[0:3, 3]
def update(self, dt): r""" Compute the predicted relative position error between the socket and ball centers, `p_{01}(t)` and save it in ``self._pos0``. .. math:: H_{01}(t) &= \left(H_{g0}(t)\right)^{-1} \; H_{g1}(t) \\ H_{01}(t) &= \begin{bmatrix} R_{01}(t) & p_{01}(t) \\ 0 & 1 \end{bmatrix} """ H_01 = dot(Hg.inv(self._frames[0].pose), self._frames[1].pose) self._pos0 = H_01[0:3,3]
def update_geometric(self, pose): """ - g: ground body - p: parent body - c: child body - r: reference frame of the joint, rigidly fixed to the parent body - n: new frame of the joint, rigidly fixed to the child body so H_nc and H_pr are constant. H_gc = H_gp * H_pc = H_gp * (H_pr * H_rn * H_nc) """ self._pose = pose H_gp = pose for j in self.childrenjoints: H_cn = j._frame1.bpose H_pr = j._frame0.bpose H_rn = j.pose H_pc = dot(H_pr, dot(H_rn, Hg.inv(H_cn))) child_pose = dot(H_gp, H_pc) j._frame1.body.update_geometric(child_pose)
def body_com_properties(body, compute_J=True): """ Compute the Center of Mass properties of a body. """ H_body_com = principalframe(body.mass) H_0_com = dot(body.pose, H_body_com) P_0_com = H_0_com[0:3, 3] if compute_J: H_com_com2 = inv(H_0_com) H_com_com2[0:3, 3] = 0. Ad_com2_body = iadjoint(dot(H_body_com, H_com_com2)) J_com2 = dot(Ad_com2_body, body.jacobian) T_com2_body = body.twist.copy() T_com2_body[3:6] = 0. dAd_com2_body = dAdjoint(Ad_com2_body, T_com2_body) dJ_com2 = dot(Ad_com2_body, body.djacobian) + \ dot(dAd_com2_body, body.jacobian) return P_0_com, J_com2, dJ_com2 else: return P_0_com
H_bc = transl(1, 1, 1) else: H_bc = eye(4) half_extents = (.5, .5, .5) mass = 1. body = Body(name='box_body', mass=massmatrix.transport(massmatrix.box(half_extents, mass), H_bc)) subframe = SubFrame(body, H_bc, name="box_com") if True: twist_c = array([0., 0., 0., 0., 0., 0.]) else: twist_c = array([1, 1, 1, 0, 0, 0.]) twist_b = dot(homogeneousmatrix.adjoint(H_bc), twist_c) freejoint = FreeJoint(gpos=homogeneousmatrix.inv(H_bc), gvel=twist_b) w.add_link(w.ground, freejoint, body) w.register(Box(subframe, half_extents)) weightc = WeightController() w.register(weightc) obs = TrajLog(w.getframes()['box_com'], w) from arboris.visu_osg import Drawer timeline = arange(0, 1, 5e-3) simulate(w, timeline, [obs, Drawer(w)]) time = timeline[:-1] obs.plot_error() show()
def ipose(self): """Inverse of pose """ return Hg.inv(self.pose)
H_o_a = Hg.transl(1,2,3) # get a translation homogeneous matrix H_a_b = Hg.rotzyx(.1,.2,.3) # get a rotation R = Rz * Ry * Rx # also Hg.rotzy R = Rz * Ry # Hg.rotzx R = Rz * Rx # Hg.rotyx R = Ry * Rx # Hg.rotz R = Rz # Hg.roty R = Ry # Hg.rotx R = Rx H_o_b = np.dot(H_o_a, H_a_b) # H from {o} to {b} is H{o}->{a} * H{a}->{b} H_b_o = Hg.inv(H_o_b) # obtain inverse, H from {b} to {o} print("H_o_b * H_b_o\n", np.dot(H_o_b, H_b_o)) isHM =Hg.ishomogeneousmatrix(H_o_b) # check validity of homogeneous matrix print("is homogeneous matrix?", isHM) p_b = np.array([.4,.5,.6]) # point p expressed in frame {b} p_o = Hg.pdot(H_o_b, p_b) # point p expressed in frame {o} v_b = np.array([.4,.5,.6]) # idem for vector, here affine part is not v_o = Hg.vdot(H_o_b, v_b) # taken into account
def jacobian(self): H_01 = dot(Hg.inv(self._frames[0].pose), self._frames[1].pose) return (dot(Hg.adjoint(H_01)[2:6,:], self._frames[1].jacobian) -self._frames[0].jacobian[2:6,:])
def _box_sphere_collision(H_g0, half_extents0, p_g1, radius1): """ Get information on box/sphere collision. :param H_g0: pose of the center of the box relative to the ground :type H_g0: (4,4)-array :param half_extents0: half lengths of the box :type half_extents0: (3,)-array :param p_g1: position of the center of the sphere relative to the ground :type p_g1: (3,) array :param float radius1: radius of the sphere :return: a tuple (*sdist*, *H_gc0*, *H_gc1*) with: * *sdist*: the minimal distance between the box and the sphere * *H_gc0*: the pose from the ground to the closest contact point on box 0 (normal along z) * *H_gc1*: the pose from the ground to the closest contact point on sphere 1 (normal along z) .. image:: img/box_sphere_collision.svg :width: 300px **Tests:** >>> from numpy import array, eye >>> H_g0 = eye(4) >>> lengths0 = array([1., 2., 3.]) >>> r1 = 0.1 >>> p_g1 = array([0., 3., 1.]) >>> (sdist, H_gc0, H_gc1)=_box_sphere_collision(H_g0, lengths0/2, p_g1, r1) >>> print(sdist) 1.9 >>> print(H_gc0) [[ 0. 1. 0. 0.] [-0. 0. 1. 1.] [ 1. -0. 0. 1.] [ 0. 0. 0. 1.]] >>> print(H_gc1) [[ 0. 1. 0. 0. ] [-0. 0. 1. 2.9] [ 1. -0. 0. 1. ] [ 0. 0. 0. 1. ]] >>> p_g1 = array([0.55, 0., 0.]) >>> (sdist, H_gc0, H_gc1)=_box_sphere_collision(H_g0, lengths0/2, p_g1, r1) >>> print(sdist) -0.05 >>> print(H_gc0) [[-0. 0. 1. 0.5] [ 0. -1. 0. 0. ] [ 1. 0. 0. 0. ] [ 0. 0. 0. 1. ]] >>> print(H_gc1) [[-0. 0. 1. 0.45] [ 0. -1. 0. 0. ] [ 1. 0. 0. 0. ] [ 0. 0. 0. 1. ]] >>> p_g1 = array([0.45, 0., 0.]) >>> (sdist, H_gc0, H_gc1)=_box_sphere_collision(H_g0, lengths0/2, p_g1, r1) >>> print(sdist) -0.15 >>> print(H_gc0) [[-0. 0. 1. 0.5] [ 0. -1. 0. 0. ] [ 1. 0. 0. 0. ] [ 0. 0. 0. 1. ]] >>> print(H_gc1) [[-0. 0. 1. 0.35] [ 0. -1. 0. 0. ] [ 1. 0. 0. 0. ] [ 0. 0. 0. 1. ]] """ assert Hg.ishomogeneousmatrix(H_g0) p_01 = Hg.pdot(Hg.inv(H_g0), p_g1) if (abs(p_01) <= half_extents0).all(): # p_01 is inside the box, we need to find the nearest face near_face = zeros(6) near_face[0:3] = half_extents0 - p_01 near_face[3:6] = half_extents0 + p_01 i = argmin(near_face) f_0 = p_01.copy() normal = zeros(3) if i < 3: f_0[i] = half_extents0[i] normal[i] = 1 else: f_0[i-3] = -half_extents0[i-3] normal[i-3] = -1 #TODO check this line is correct f_g = Hg.pdot(H_g0, f_0) sdist = -norm(f_g - p_g1)-radius1 else: # find the point x inside the box that is the nearest to # the sphere center: f_0 = zeros(3) for i in arange(3): f_0[i] = max(min(half_extents0[i], p_01[i]), -half_extents0[i]) f_g = Hg.pdot(H_g0, f_0) vec = p_g1 - f_g normal = vec/norm(vec) sdist = norm(vec) - radius1 H_gc0 = Hg.zaligned(normal) H_gc1 = H_gc0.copy() H_gc0[0:3, 3] = f_g H_gc1[0:3, 3] = p_g1 - radius1*normal return (sdist, H_gc0, H_gc1)
def _box_sphere_collision(H_g0, half_extents0, p_g1, radius1): """ :param H_g0: pose of the box `H_{g0}` :type H_g0: (4,4) array :param half_extents0: half lengths of the box :type half_extents0: (3,) array :param p_g1: center of the sphere :type p_g1: (3,) array :param radius1: radius of the sphere :type radius1: float .. image:: img/box_sphere_collision.png **Tests:** >>> from numpy import array, eye >>> H_g0 = eye(4) >>> lengths0 = array([1., 2., 3.]) >>> r1 = 0.1 >>> p_g1 = array([0., 3., 1.]) >>> (sdist, H_gc0, H_gc1) = _box_sphere_collision(H_g0, lengths0/2, p_g1, r1) >>> print(sdist) 1.9 >>> print(H_gc0) [[ 0. 1. 0. 0.] [-0. 0. 1. 1.] [ 1. -0. 0. 1.] [ 0. 0. 0. 1.]] >>> print(H_gc1) [[ 0. 1. 0. 0. ] [-0. 0. 1. 2.9] [ 1. -0. 0. 1. ] [ 0. 0. 0. 1. ]] >>> p_g1 = array([0.55, 0., 0.]) >>> (sdist, H_gc0, H_gc1) = _box_sphere_collision(H_g0, lengths0/2, p_g1, r1) >>> print(sdist) -0.05 >>> print(H_gc0) [[-0. 0. 1. 0.5] [ 0. -1. 0. 0. ] [ 1. 0. 0. 0. ] [ 0. 0. 0. 1. ]] >>> print(H_gc1) [[-0. 0. 1. 0.45] [ 0. -1. 0. 0. ] [ 1. 0. 0. 0. ] [ 0. 0. 0. 1. ]] >>> p_g1 = array([0.45, 0., 0.]) >>> (sdist, H_gc0, H_gc1) = _box_sphere_collision(H_g0, lengths0/2, p_g1, r1) >>> print(sdist) -0.15 >>> print(H_gc0) [[-0. 0. 1. 0.5] [ 0. -1. 0. 0. ] [ 1. 0. 0. 0. ] [ 0. 0. 0. 1. ]] >>> print(H_gc1) [[-0. 0. 1. 0.35] [ 0. -1. 0. 0. ] [ 1. 0. 0. 0. ] [ 0. 0. 0. 1. ]] """ assert Hg.ishomogeneousmatrix(H_g0) p_01 = Hg.pdot(Hg.inv(H_g0), p_g1) if (abs(p_01) <= half_extents0).all(): # p_01 is inside the box, we need to find the nearest face i = argmin(hstack((half_extents0 - p_01, half_extents0 + p_01))) f_0 = p_01.copy() normal = zeros(3) if i < 3: f_0[i] = half_extents0[i] normal[i] = 1 else: f_0[i - 3] = -half_extents0[i - 3] normal[i - 3] = -1 #TODO check this line is correct f_g = Hg.pdot(H_g0, f_0) sdist = -norm(f_g - p_g1) - radius1 else: # find the point x inside the box that is the nearest to # the sphere center: f_0 = zeros(3) for i in range(3): f_0[i] = max(min(half_extents0[i], p_01[i]), -half_extents0[i]) f_g = Hg.pdot(H_g0, f_0) vec = p_g1 - f_g normal = vec / norm(vec) sdist = norm(vec) - radius1 H_gc0 = Hg.zaligned(normal) H_gc1 = H_gc0.copy() H_gc0[0:3, 3] = f_g H_gc1[0:3, 3] = p_g1 - radius1 * normal return (sdist, H_gc0, H_gc1)
def to_arboris( obj , default=None): """ """ #print "obj:", obj.__class__ #, obj if isinstance(obj, urdf_parser.Link): body = arboris.core.Body() body.name = obj.name body.mass = to_arboris(obj.inertial) return body elif isinstance(obj, urdf_parser.Inertial): m = obj.mass H_body_com = to_arboris(obj.origin, np.eye(4)) xx, yy, zz, xy, xz, yz = [obj.matrix["i"+n] for n in ["xx", "yy", "zz", "xy", "xz", "yz"]] m = max(1e-6, m) xx = max(1e-6, xx) yy = max(1e-6, yy) zz = max(1e-6, zz) M_com = np.array([[xx, xy, xz, 0., 0., 0.], [xy, yy, yz, 0., 0., 0.], [xz, yz, zz, 0., 0., 0.], [0., 0., 0., m , 0., 0.], [0., 0., 0., 0., m , 0.], [0., 0., 0., 0., 0., m ]]) return arboris.massmatrix.transport(M_com, inv(H_body_com) ) elif isinstance(obj, urdf_parser.Pose): H = arboris.homogeneousmatrix.transl( *obj.position) H[0:3,0:3] = roll_pitch_yaw_to_rotation_matrix(*obj.rotation) return H elif isinstance(obj, urdf_parser.Joint): joint = {} joint["parent"] = obj.parent joint["child"] = obj.child joint["H_parent_child"] = to_arboris(obj.origin, np.eye(4)) axis = [float(v) for v in obj.axis.split()] if len(obj.axis.split())==3 else obj.axis if obj.joint_type == urdf_parser.Joint.REVOLUTE: if (axis in ["x", "X"]) or ( np.allclose(axis, [1,0,0])): joint["type"] = arboris.joints.RxJoint elif (axis in ["y", "Y"]) or ( np.allclose(axis, [0,1,0])): joint["type"] = arboris.joints.RyJoint elif (axis in ["z", "Z"]) or ( np.allclose(axis, [0,0,1])): joint["type"] = arboris.joints.RzJoint else: joint["H_child_joint"] = arboris.homogeneousmatrix.zaligned(axis) joint["type"] = arboris.joints.RzJoint elif obj.joint_type == urdf_parser.Joint.PRISMATIC: if (axis in ["x", "X"]) or ( np.allclose(axis, [1,0,0])): joint["type"] = arboris.joints.TxJoint elif (axis in ["y", "Y"]) or ( np.allclose(axis, [0,1,0])): joint["type"] = arboris.joints.TyJoint elif (axis in ["z", "Z"]) or ( np.allclose(axis, [0,0,1])): joint["type"] = arboris.joints.TzJoint else: joint["H_child_joint"] = arboris.homogeneousmatrix.zaligned(axis) joint["type"] = arboris.joints.TzJoint elif obj.joint_type == urdf_parser.Joint.FIXED: joint["type"] = arboris.joints.FixedJoint elif obj.joint_type == urdf_parser.Joint.FLOATING: print "WARNING: urdf containt free joint; this joint is deprecated." joint["type"] = arboris.joints.FreeJoint else: raise KeyError, "Joint type: '"+obj.joint_type+"' is unknown or not not implemented yet." return joint elif isinstance(obj, urdf_parser.Visual): visual = to_arboris(obj.geometry) visual["transform"] = to_arboris(obj.origin, np.eye(4)) #material = to_arboris(obj.material) return visual elif isinstance(obj, urdf_parser.Collision): collision = to_arboris(obj.geometry) collision["transform"] = to_arboris(obj.origin, np.eye(4)) return collision elif isinstance(obj, urdf_parser.Mesh): mesh_path = obj.filename scale = 1 if obj.scale is None else [float(v) for v in obj.scale.split()] return {"shape": "mesh", "mesh_from_urdf": mesh_path, "scale": scale} elif isinstance(obj, urdf_parser.Box): mesh_path = arboris_simple_shapes_path + "#simple_box_node" scale = obj.dims return {"shape": "box", "mesh": mesh_path, "scale": scale} elif isinstance(obj, urdf_parser.Sphere): mesh_path = arboris_simple_shapes_path + "#simple_sphere_node" scale = obj.radius return {"shape": "sphere", "mesh": mesh_path, "scale": scale} elif isinstance(obj, urdf_parser.Cylinder): mesh_path = arboris_simple_shapes_path + "#simple_cylinder_node" scale = [obj.radius, obj.radius, obj.length] return {"shape": "cylinder", "mesh": mesh_path, "scale": scale} elif isinstance(obj, None.__class__): if default is not None: return default else: print "WARNING: Cannot load object", obj.__class__, obj
def _box_sphere_collision(H_g0, half_extents0, p_g1, radius1): """ :param H_g0: pose of the box `H_{g0}` :type H_g0: (4,4) array :param half_extents0: half lengths of the box :type half_extents0: (3,) array :param p_g1: center of the sphere :type p_g1: (3,) array :param radius1: radius of the sphere :type radius1: float .. image:: img/box_sphere_collision.png **Tests:** >>> from numpy import array, eye >>> H_g0 = eye(4) >>> lengths0 = array([1., 2., 3.]) >>> r1 = 0.1 >>> p_g1 = array([0., 3., 1.]) >>> (sdist, H_gc0, H_gc1) = _box_sphere_collision(H_g0, lengths0/2, p_g1, r1) >>> print(sdist) 1.9 >>> print(H_gc0) [[ 0. 1. 0. 0.] [-0. 0. 1. 1.] [ 1. -0. 0. 1.] [ 0. 0. 0. 1.]] >>> print(H_gc1) [[ 0. 1. 0. 0. ] [-0. 0. 1. 2.9] [ 1. -0. 0. 1. ] [ 0. 0. 0. 1. ]] >>> p_g1 = array([0.55, 0., 0.]) >>> (sdist, H_gc0, H_gc1) = _box_sphere_collision(H_g0, lengths0/2, p_g1, r1) >>> print(sdist) -0.05 >>> print(H_gc0) [[-0. 0. 1. 0.5] [ 0. -1. 0. 0. ] [ 1. 0. 0. 0. ] [ 0. 0. 0. 1. ]] >>> print(H_gc1) [[-0. 0. 1. 0.45] [ 0. -1. 0. 0. ] [ 1. 0. 0. 0. ] [ 0. 0. 0. 1. ]] >>> p_g1 = array([0.45, 0., 0.]) >>> (sdist, H_gc0, H_gc1) = _box_sphere_collision(H_g0, lengths0/2, p_g1, r1) >>> print(sdist) -0.15 >>> print(H_gc0) [[-0. 0. 1. 0.5] [ 0. -1. 0. 0. ] [ 1. 0. 0. 0. ] [ 0. 0. 0. 1. ]] >>> print(H_gc1) [[-0. 0. 1. 0.35] [ 0. -1. 0. 0. ] [ 1. 0. 0. 0. ] [ 0. 0. 0. 1. ]] """ assert Hg.ishomogeneousmatrix(H_g0) p_01 = Hg.pdot(Hg.inv(H_g0), p_g1) if (abs(p_01) <= half_extents0).all(): # p_01 is inside the box, we need to find the nearest face i = argmin(hstack((half_extents0 - p_01, half_extents0 + p_01))) f_0 = p_01.copy() normal = zeros(3) if i < 3: f_0[i] = half_extents0[i] normal[i] = 1 else: f_0[i-3] = -half_extents0[i-3] normal[i-3] = -1 #TODO check this line is correct f_g = Hg.pdot(H_g0, f_0) sdist = -norm(f_g - p_g1)-radius1 else: # find the point x inside the box that is the nearest to # the sphere center: f_0 = zeros(3) for i in range(3): f_0[i] = max(min(half_extents0[i], p_01[i]), -half_extents0[i]) f_g = Hg.pdot(H_g0, f_0) vec = p_g1 - f_g normal = vec/norm(vec) sdist = norm(vec) - radius1 H_gc0 = Hg.zaligned(normal) H_gc1 = H_gc0.copy() H_gc0[0:3, 3] = f_g H_gc1[0:3, 3] = p_g1 - radius1*normal return (sdist, H_gc0, H_gc1)
def add(w, is_fixed=False, create_shapes=True, create_contacts=True): """ construction of the icub robot for arboris-python: Kinematics data are from: http://eris.liralab.it/wiki/ICubForwardKinematics Inertia comes from the Icub.cpp used in the iCub_SIM program Some data are not well explained, or are badly defined """ bodies_data = get_bodies_data() bodies_shapes_data = get_bodies_shapes_data() joints_data = get_joints_data() shapes_data = get_contact_data() ## bodies creation bodies = {} for name, data in bodies_data.items(): bodies[name] = Body(name=name) mass = zeros((6, 6)) for dims, m, H in data: # get dims, mass and transformation from data sf = SubFrame(bodies[name], H) if len(dims) == 3: # check the type of shape: len =3: box M = box(dims, m) elif len(dims) == 2: # len =2:cylinder, M = cylinder(dims[0], dims[1], m) elif len(dims) == 1: # len =1:sphere, M = sphere(dims[0], m) else: raise ValueError mass += transport(M, inv(H)) # add the mass of the shape to bodies[name].mass = mass # the total mass ## check if iCub has its waist fixed on the structure (the ground) if is_fixed: bodies['waist'] = w.ground else: w.add_link(w.ground, FreeJoint(name='root'), bodies['waist']) ## joints creation for name, data in joints_data.items(): parent, Hp_l, child = data w.add_link(SubFrame(bodies[parent], Hp_l), RzJoint(name=name), bodies[child]) if create_shapes is True: ## body shapes creations for name, data in bodies_shapes_data.items(): for dims, H in data: # get dims, mass and transformation from data sf = SubFrame(bodies[name], H) if len(dims) == 3: # check the type of shape: len =3: box sh = Box(sf, dims, name+".body_shape") elif len(dims) == 2: # len =2:cylinder, sh = Cylinder(sf, dims[0], dims[1], name+".body_shape") elif len(dims) == 1: # len =1:sphere, sh = Sphere(sf, dims[0], name+".body_shape") else: raise ValueError w.register(sh) if create_contacts is True: ## contact shapes creation for name, data in shapes_data.items(): parent, dims, Hpf = data sf = SubFrame(bodies[parent], Hpf, name=name) if len(dims) == 3: # check the type of shape: len =3: box sh = Box(sf, dims, name=name) elif len(dims) == 2: # len =2:cylinder, sh = Cylinder(sf, dims[0], dims[1], name=name) elif len(dims) == 1: # len =1:sphere, sh = Sphere(sf, dims[0], name=name) else: sh = Point(sf, name=name) w.register(sh) w.init()
def update_dynamic(self, pose, jac, djac, twist): r"""Sets the body ``pose, jac, djac, twist`` and computes its children ones. This method (1) sets the body dynamical model (pose, jacobian, hessian and twist) to the values given as argument, (2) computes the dynamical model of the children bodies and (3) call the equivalent method on them. As a result, the dynamical model of all the bodies is computed recursively. :param pose: the body pose relative to the ground: `H_{gb}` :type pose: 4x4 ndarray :param jac: the body jacobian relative to the world (in body frame): `\J[b]_{b/g}` :type jac: 6x(ndof) ndarray :param djac: the derivative of the body jacobian: `\dJ[b]_{b/g}` :param twist: the body twist: `\twist[b]_{b/g}` :type twist: 6 ndarray **Algorithm:** Let's define the following notations: - `g`: the ground body, - `p`: the parent body (which is the present :class:`arboris.Body` instance) - `c`: a child body, - `j`: the joint between the bodies `p` and `c`, - `r`: reference frame of the joint `j`, rigidly fixed to the parent body - `n`: new frame of the joint `j`, rigidly fixed to the child body .. image:: img/body_model.png One can notice that `H_{nc}` and `H_{pr}` are constant. The child body pose can be computed as .. math:: H_{gc} &= H_{gp} \; H_{pc} \\ &= H_{gp} \; (H_{pr} \; H_{rn} \; H_{nc}) where `H_{rn}` depends on the joint generalized configuration and is given by its :attr:`~arboris.core.Joint.pose` attribute. The chil body twist is given as .. math:: \twist[c]_{c/g} &= \Ad[c]_p \; \twist[p]_{p/g} + \twist[c]_{c/p} \\ &= \Ad[c]_p \; \twist[p]_{p/g} + \Ad[c]_n \; \twist[n]_{n/r} \\ &= \Ad[c]_p \; \J[p]_{p/g} \; \GVel + \Ad[c]_n \; \J[n]_{n/r} \; \GVel_j \\ &= \J[c]_{c/g} \; \GVel where `\twist[n]_{n/r}` isgiven by the joint :attr:`~arboris.core.Joint.twist` attribute. \GVel_j is the generalized velocity of the joint `j` and is related to the world generalized velocity by trivial projection .. math:: \GVel_j &= \begin{bmatrix} 0 & \cdots &0 & I & 0 & \cdots & 0 \end{bmatrix} \; \GVel therefore, the child body jacobian is .. math:: \J[c]_{c/g} &= \Ad[c]_p \; \J[p]_{p/g} + \begin{bmatrix} 0 & \cdots & 0 & \Ad[c]_n \; \J[n]_{n/r} & 0 & \cdots & 0 \end{bmatrix} \\ where `\J[n]_{n/r}` is given by the joint :attr:`~arboris.core.Joint.jacobian` attribute. Derivating the previous expression leads to the child body acceleration: .. math:: \dtwist[c]_{c/g} &= \dAd[c]_p \; \J[p]_{p/g} \; \GVel + \Ad[c]_p \; \dJ[p]_{p/g} \; \GVel + \Ad[c]_p \; \J[p]_g \; \dGVel + \Ad[c]_n \; \dJ[n]_{n/r} \; \GVel_j + \Ad[c]_n \; \J[n]_{m/r} \dGVel_j \\ &= \J[c]_{c/g} \; \dGVel + \dJ[c]_{c/g} \; \GVel the expression of the child body hessian is then obtained by identification: .. math:: \dJ[c]_{c/g} \; \GVel &= \dAd[c]_p \; \J[p]_{p/g} \; \GVel + \Ad[c]_p \; \dJ[p]_{p/g} \; \GVel + \Ad[c]_n \; \dJ[n]_{n/r} \; \GVel_j \\ \dJ[c]_{c/g} &= \dAd[c]_p \; \J[p]_{p/g} + \Ad[c]_p \; \dJ[p]_{p/g} + \begin{bmatrix} 0 & \cdots & 0 & (\Ad[c]_n \; \dJ[n]_{n/r}) & 0 & \cdots & 0 \end{bmatrix} with .. math:: \dAd[c]_p &= \Ad[c]_n \; \dAd[n]_r \; \Ad[r]_p and where `\dAd[n]_r` and `\dJ[n]_{n/r}` are respectively given by the joint :attr:`~arboris.core.Joint.idadjoint` and :attr:`~arboris.core.Joint.djacobian` attributes. T_ab: velocity of {a} relative to {b} expressed in {a} (body twist) """ self._pose = pose self._jacobian = jac self._djacobian = djac self._twist = twist wx = array( [[ 0, -self.twist[2], self.twist[1]], [ self.twist[2], 0, -self.twist[0]], [-self.twist[1], self.twist[0], 0]]) if self.mass[3, 3] <= 1e-10: #TODO: avoid hardcoded value rx = zeros((3, 3)) else: rx = self.mass[0:3, 3:6]/self.mass[3,3] #TODO: better solution? self._nleffects = zeros((6, 6)) self._nleffects[0:3, 0:3] = wx self._nleffects[3:6, 3:6] = wx self._nleffects[0:3, 3:6] = dot(rx, wx) - dot(wx, rx) self._nleffects = dot(self.nleffects, self.mass) H_gp = pose J_pg = jac dJ_pg = djac T_pg = twist for j in self.childrenjoints: H_cn = j._frame1.bpose H_pr = j._frame0.bpose H_rn = j.pose H_pc = dot(H_pr, dot(H_rn, Hg.inv(H_cn))) child_pose = dot(H_gp, H_pc) Ad_cp = Hg.iadjoint(H_pc) Ad_cn = Hg.adjoint(H_cn) Ad_rp = Hg.adjoint(Hg.inv(H_pr)) dAd_nr = j.idadjoint dAd_cp = dot(Ad_cn, dot(dAd_nr, Ad_rp)) T_nr = j.twist J_nr = j.jacobian dJ_nr = j.djacobian child_twist = dot(Ad_cp, T_pg) + dot(Ad_cn, T_nr) child_jac = dot(Ad_cp, J_pg) child_jac[:,j.dof] += dot(Ad_cn, J_nr) child_djac = dot(dAd_cp, J_pg) + dot(Ad_cp, dJ_pg) child_djac[:, j.dof] += dot(Ad_cn, dJ_nr) j._frame1.body.update_dynamic(child_pose, child_jac, child_djac, child_twist)
def jacobian(self): H_01 = dot(Hg.inv(self._frames[0].pose), self._frames[1].pose) return (dot(Hg.adjoint(H_01)[2:6, :], self._frames[1].jacobian) - self._frames[0].jacobian[2:6, :])
def _human36(world, height=1.741, mass=73, name=''): """ TODO: HuMAnS' doc about inertia is erroneous (the real math is in the IOMatrix proc in DynamicData.maple) """ assert isinstance(world, World) w = world L = anatomical_lengths(height) bodies = {} humansbodyid_to_humansbodyname_map = {} for b in _humans_bodies(height, mass): #mass matrix at com mass_g = b['Mass'] * diag( hstack((b['GyrationRadius']**2, (1,1,1)))) H_fg = eye(4) H_fg[0:3,3] = b['CenterOfMass'] H_gf = Hg.inv(H_fg) #mass matrix at body's frame origin: mass_o = dot(adjoint(H_gf).T, dot(mass_g, adjoint(H_gf))) bodies[b['HumansName']] = Body( name=b['HumansName'], mass=mass_o) humansbodyid_to_humansbodyname_map[b['HumansId']] = b['HumansName'] rf = SubFrame(w.ground, Hg.transl(0, L['yfootL']+L['ytibiaL']+L['yfemurL'], 0)) w.add_link(rf, FreeJoint(), bodies['LPT']) rf = SubFrame(bodies['LPT'], Hg.transl(0, 0, L['zhip']/2.)) j = RzRyRxJoint() w.add_link(rf, j, bodies['ThighR']) rf = SubFrame(bodies['ThighR'], Hg.transl(0, -L['yfemurR'], 0)) w.add_link(rf, RzJoint(), bodies['ShankR']) rf = SubFrame(bodies['ShankR'], Hg.transl(0, -L['ytibiaR'], 0)) w.add_link(rf, RzRxJoint(), bodies['FootR']) rf = SubFrame(bodies['LPT'], Hg.transl(0, 0, -L['zhip']/2.)) w.add_link(rf, RzRyRxJoint(), bodies['ThighL']) rf = SubFrame(bodies['ThighL'], Hg.transl(0, -L['yfemurL'], 0)) w.add_link(rf, RzJoint(), bodies['ShankL']) rf = SubFrame(bodies['ShankL'], Hg.transl(0, -L['ytibiaL'], 0)) w.add_link(rf, RzRxJoint(), bodies['FootL']) rf = SubFrame(bodies['LPT'], Hg.transl(-L['xvT10'], L['yvT10'], 0)) w.add_link(rf, RzRyRxJoint(), bodies['UPT']) rf = SubFrame(bodies['UPT'], Hg.transl(L['xsternoclavR'], L['ysternoclavR'], L['zsternoclavR'])) j = RyRxJoint() w.add_link(rf, j, bodies['ScapulaR']) rf = SubFrame(bodies['ScapulaR'], Hg.transl(-L['xshoulderR'], L['yshoulderR'], L['zshoulderR'])) w.add_link(rf, RzRyRxJoint(), bodies['ArmR']) rf = SubFrame(bodies['ArmR'], Hg.transl(0, -L['yhumerusR'], 0)) w.add_link(rf, RzRyJoint(), bodies['ForearmR']) rf = SubFrame(bodies['ForearmR'], Hg.transl(0, -L['yforearmR'], 0)) w.add_link(rf, RzRxJoint(), bodies['HandR']) rf = SubFrame(bodies['UPT'], Hg.transl( L['xsternoclavL'], L['ysternoclavL'], -L['zsternoclavL'])) w.add_link(rf, RyRxJoint(), bodies['ScapulaL']) rf = SubFrame(bodies['ScapulaL'], Hg.transl(-L['xshoulderL'], L['yshoulderL'], -L['zshoulderL'])) w.add_link(rf, RzRyRxJoint(), bodies['ArmL']) rf = SubFrame(bodies['ArmL'], Hg.transl(0, -L['yhumerusL'], 0)) w.add_link(rf, RzRyJoint(), bodies['ForearmL']) rf = SubFrame(bodies['ForearmL'], Hg.transl(0, -L['yforearmL'], 0)) w.add_link(rf, RzRxJoint(), bodies['HandL']) rf = SubFrame(bodies['UPT'], Hg.transl(L['xvT10'], L['yvC7'], 0)) w.add_link(rf, RzRyRxJoint(), bodies['Head']) # add tags tags = {} for t in _humans_tags(height): bodyname = humansbodyid_to_humansbodyname_map[t['HumansBodyId']] tag = SubFrame( bodies[bodyname], Hg.transl(t['Position'][0], t['Position'][1], t['Position'][2]), t['HumansName']) tags[t['HumansName']] = tag w.register(tag) # Add point shapes to the feet for k in ('Right foot toe tip', 'Right foot heel', 'Right foot phalange 5', 'Right foot Phalange 1', 'Left foot toe tip','Left foot heel', 'Left foot phalange 5','Left foot phalange 1'): shape = Point(tags[k], name=k) w.register(shape) w.init() return (bodies, tags)
def add(w, is_fixed=False, create_shapes=True, create_contacts=True): """ construction of the icub robot for arboris-python: Kinematics data are from: http://eris.liralab.it/wiki/ICubForwardKinematics Inertia comes from the Icub.cpp used in the iCub_SIM program Some data are not well explained, or are badly defined """ bodies_data = get_bodies_data() bodies_shapes_data = get_bodies_shapes_data() joints_data = get_joints_data() shapes_data = get_contact_data() ## bodies creation bodies = {} for name, data in bodies_data.items(): bodies[name] = Body(name=name) mass = zeros((6, 6)) for dims, m, H in data: # get dims, mass and transformation from data sf = SubFrame(bodies[name], H) if len(dims) == 3: # check the type of shape: len =3: box M = box(dims, m) elif len(dims) == 2: # len =2:cylinder, M = cylinder(dims[0], dims[1], m) elif len(dims) == 1: # len =1:sphere, M = sphere(dims[0], m) else: raise ValueError mass += transport(M, inv(H)) # add the mass of the shape to bodies[name].mass = mass # the total mass ## check if iCub has its waist fixed on the structure (the ground) if is_fixed: bodies['waist'] = w.ground else: w.add_link(w.ground, FreeJoint(name='root'), bodies['waist']) ## joints creation for name, data in joints_data.items(): parent, Hp_l, child = data w.add_link(SubFrame(bodies[parent], Hp_l), RzJoint(name=name), bodies[child]) if create_shapes is True: ## body shapes creations for name, data in bodies_shapes_data.items(): for dims, H in data: # get dims, mass and transformation from data sf = SubFrame(bodies[name], H) if len(dims) == 3: # check the type of shape: len =3: box sh = Box(sf, dims, name + ".body_shape") elif len(dims) == 2: # len =2:cylinder, sh = Cylinder(sf, dims[0], dims[1], name + ".body_shape") elif len(dims) == 1: # len =1:sphere, sh = Sphere(sf, dims[0], name + ".body_shape") else: raise ValueError w.register(sh) if create_contacts is True: ## contact shapes creation for name, data in shapes_data.items(): parent, dims, Hpf = data sf = SubFrame(bodies[parent], Hpf, name=name) if len(dims) == 3: # check the type of shape: len =3: box sh = Box(sf, dims, name=name) elif len(dims) == 2: # len =2:cylinder, sh = Cylinder(sf, dims[0], dims[1], name=name) elif len(dims) == 1: # len =1:sphere, sh = Sphere(sf, dims[0], name=name) else: sh = Point(sf, name=name) w.register(sh) w.init()
def update_dynamic(self, pose, jac, djac, twist): r""" Compute the body ``pose, jac, djac, twist`` and its children ones. This method (1) sets the body dynamical model (pose, jacobian, hessian and twist) to the values given as argument, (2) computes the dynamical model of the children bodies and (3) call the equivalent method on them. As a result, the dynamical model of all the bodies is computed recursively. :param pose: the body pose relative to the ground: `H_{gb}` :type pose: 4x4 ndarray :param jac: the body jacobian relative to the world (in body frame): `\J[b]_{b/g}` :type jac: 6x(ndof) ndarray :param djac: the derivative of the body jacobian: `\dJ[b]_{b/g}` :param twist: the body twist: `\twist[b]_{b/g}` :type twist: 6 ndarray **Algorithm:** Let's define the following notations: - `g`: the ground body, - `p`: the parent body (which is the present :class:`arboris.Body` instance) - `c`: a child body, - `j`: the joint between the bodies `p` and `c`, - `r`: reference frame of the joint `j`, rigidly fixed to the parent body - `n`: new frame of the joint `j`, rigidly fixed to the child body .. image:: img/body_model.svg :width: 300px One can notice that `H_{nc}` and `H_{pr}` are constant. The child body pose can be computed as .. math:: H_{gc} &= H_{gp} \; H_{pc} \\ &= H_{gp} \; (H_{pr} \; H_{rn} \; H_{nc}) where `H_{rn}` depends on the joint generalized configuration and is given by its :attr:`~arboris.core.Joint.pose` attribute. The chil body twist is given as .. math:: \twist[c]_{c/g} &= \Ad_{cp} \; \twist[p]_{p/g} + \twist[c]_{c/p} \\ &= \Ad_{cp} \; \twist[p]_{p/g} + \Ad_{cn} \; \twist[n]_{n/r} \\ &= \Ad_{cp} \; \J[p]_{p/g} \; \GVel + \Ad_{cn} \; \J[n]_{n/r} \; \GVel_j \\ &= \J[c]_{c/g} \; \GVel where `\twist[n]_{n/r}` is given by the joint :attr:`~arboris.core.Joint.twist` attribute. `\GVel_j` is the generalized velocity of the joint `j` and is related to the world generalized velocity by trivial projection .. math:: \GVel_j &= \begin{bmatrix} 0 & \cdots &0 & I & 0 & \cdots & 0 \end{bmatrix} \; \GVel therefore, the child body jacobian is .. math:: \J[c]_{c/g} &= \Ad_{cp} \; \J[p]_{p/g} + \begin{bmatrix} 0 & \cdots & 0 & \Ad_{cn} \; \J[n]_{n/r} & 0 & \cdots & 0 \end{bmatrix} \\ where `\J[n]_{n/r}` is given by the joint :attr:`~arboris.core.Joint.jacobian` attribute. Derivating the previous expression leads to the child body acceleration: .. math:: \dtwist[c]_{c/g} &= \dAd_{cp} \; \J[p]_{p/g} \; \GVel + \Ad_{cp} \; \dJ[p]_{p/g} \; \GVel + \Ad_{cp} \; \J[p]_g \; \dGVel + \Ad_{cn} \; \dJ[n]_{n/r} \; \GVel_j + \Ad_{cn} \; \J[n]_{m/r} \dGVel_j \\ &= \J[c]_{c/g} \; \dGVel + \dJ[c]_{c/g} \; \GVel the expression of the child body hessian is then obtained by identification: .. math:: \dJ[c]_{c/g} \; \GVel &= \dAd_{cp} \; \J[p]_{p/g} \; \GVel + \Ad_{cp} \; \dJ[p]_{p/g} \; \GVel + \Ad_{cn} \; \dJ[n]_{n/r} \; \GVel_j \\ \dJ[c]_{c/g} &= \dAd_{cp} \; \J[p]_{p/g} + \Ad_{cp} \; \dJ[p]_{p/g} + \begin{bmatrix} 0 & \cdots & 0 & (\Ad_{cn} \; \dJ[n]_{n/r}) & 0 & \cdots & 0 \end{bmatrix} with .. math:: \dAd_{cp} &= \Ad_{cn} \; \dAd_{nr} \; \Ad_{rp} and where `\dAd_{nr}` and `\dJ[n]_{n/r}` are respectively given by the joint :attr:`~arboris.core.Joint.idadjoint` and :attr:`~arboris.core.Joint.djacobian` attributes. T_ab: velocity of {a} relative to {b} expressed in {a} (body twist) """ self._pose = pose self._jacobian = jac self._djacobian = djac self._twist = twist wx = array([[0, -self.twist[2], self.twist[1]], [self.twist[2], 0, -self.twist[0]], [-self.twist[1], self.twist[0], 0]]) if self.mass[5, 5] <= 1e-10: #TODO: avoid hardcoded value rx = zeros((3, 3)) else: rx = self.mass[0:3, 3:6] / self.mass[5, 5] self._nleffects = zeros((6, 6)) self._nleffects[0:3, 0:3] = wx self._nleffects[3:6, 3:6] = wx self._nleffects[0:3, 3:6] = dot(rx, wx) - dot(wx, rx) self._nleffects = dot(self.nleffects, self.mass) H_gp = pose J_pg = jac dJ_pg = djac T_pg = twist for j in self.childrenjoints: H_cn = j.frame1.bpose H_pr = j.frame0.bpose H_rn = j.pose H_pc = dot(H_pr, dot(H_rn, Hg.inv(H_cn))) child_pose = dot(H_gp, H_pc) Ad_cp = Hg.iadjoint(H_pc) Ad_cn = Hg.adjoint(H_cn) Ad_rp = Hg.adjoint(Hg.inv(H_pr)) dAd_nr = j.idadjoint dAd_cp = dot(Ad_cn, dot(dAd_nr, Ad_rp)) T_nr = j.twist J_nr = j.jacobian dJ_nr = j.djacobian child_twist = dot(Ad_cp, T_pg) + dot(Ad_cn, T_nr) child_jac = dot(Ad_cp, J_pg) child_jac[:, j.dof] += dot(Ad_cn, J_nr) child_djac = dot(dAd_cp, J_pg) + dot(Ad_cp, dJ_pg) child_djac[:, j.dof] += dot(Ad_cn, dJ_nr) j.frame1.body.update_dynamic(child_pose, child_jac, child_djac, child_twist)
H_bc = transl(1,1,1) else: H_bc = eye(4) lengths = (1.,1.,1.) mass = 1. body = Body( name='box_body', mass=massmatrix.transport(massmatrix.box(lengths, mass), H_bc)) subframe = SubFrame(body, H_bc, name="box_com") if True: twist_c = array([0.,0.,0.,0.,0.,0.]) else: twist_c = array([1,1,1,0,0,0.]) twist_b = dot(homogeneousmatrix.adjoint(H_bc), twist_c) freejoint = FreeJoint(gpos=homogeneousmatrix.inv(H_bc), gvel=twist_b) w.add_link(w.ground, freejoint, body) w.register(Box(subframe, lengths)) weightc = WeightController(w) w.register(weightc) obs = TrajLog(w.getframes()['box_com'], w) w.observers.append(obs) from arboris.visu_osg import Drawer w.observers.append(Drawer(w)) timeline = arange(0,1,5e-3) simulate(w, timeline)
def _box_sphere_collision(H_g0, half_extents0, p_g1, radius1): """ Get information on box/sphere collision. :param H_g0: pose of the center of the box relative to the ground :type H_g0: (4,4)-array :param half_extents0: half lengths of the box :type half_extents0: (3,)-array :param p_g1: position of the center of the sphere relative to the ground :type p_g1: (3,) array :param float radius1: radius of the sphere :return: a tuple (*sdist*, *H_gc0*, *H_gc1*) with: * *sdist*: the minimal distance between the box and the sphere * *H_gc0*: the pose from the ground to the closest contact point on box 0 (normal along z) * *H_gc1*: the pose from the ground to the closest contact point on sphere 1 (normal along z) .. image:: img/box_sphere_collision.svg :width: 300px **Tests:** >>> from numpy import array, eye >>> H_g0 = eye(4) >>> lengths0 = array([1., 2., 3.]) >>> r1 = 0.1 >>> p_g1 = array([0., 3., 1.]) >>> (sdist, H_gc0, H_gc1)=_box_sphere_collision(H_g0, lengths0/2, p_g1, r1) >>> print(sdist) 1.9 >>> print(H_gc0) [[ 0. 1. 0. 0.] [-0. 0. 1. 1.] [ 1. -0. 0. 1.] [ 0. 0. 0. 1.]] >>> print(H_gc1) [[ 0. 1. 0. 0. ] [-0. 0. 1. 2.9] [ 1. -0. 0. 1. ] [ 0. 0. 0. 1. ]] >>> p_g1 = array([0.55, 0., 0.]) >>> (sdist, H_gc0, H_gc1)=_box_sphere_collision(H_g0, lengths0/2, p_g1, r1) >>> print(sdist) -0.05 >>> print(H_gc0) [[-0. 0. 1. 0.5] [ 0. -1. 0. 0. ] [ 1. 0. 0. 0. ] [ 0. 0. 0. 1. ]] >>> print(H_gc1) [[-0. 0. 1. 0.45] [ 0. -1. 0. 0. ] [ 1. 0. 0. 0. ] [ 0. 0. 0. 1. ]] >>> p_g1 = array([0.45, 0., 0.]) >>> (sdist, H_gc0, H_gc1)=_box_sphere_collision(H_g0, lengths0/2, p_g1, r1) >>> print(sdist) -0.15 >>> print(H_gc0) [[-0. 0. 1. 0.5] [ 0. -1. 0. 0. ] [ 1. 0. 0. 0. ] [ 0. 0. 0. 1. ]] >>> print(H_gc1) [[-0. 0. 1. 0.35] [ 0. -1. 0. 0. ] [ 1. 0. 0. 0. ] [ 0. 0. 0. 1. ]] """ assert Hg.ishomogeneousmatrix(H_g0) p_01 = Hg.pdot(Hg.inv(H_g0), p_g1) if (abs(p_01) <= half_extents0).all(): # p_01 is inside the box, we need to find the nearest face near_face = zeros(6) near_face[0:3] = half_extents0 - p_01 near_face[3:6] = half_extents0 + p_01 i = argmin(near_face) f_0 = p_01.copy() normal = zeros(3) if i < 3: f_0[i] = half_extents0[i] normal[i] = 1 else: f_0[i - 3] = -half_extents0[i - 3] normal[i - 3] = -1 #TODO check this line is correct f_g = Hg.pdot(H_g0, f_0) sdist = -norm(f_g - p_g1) - radius1 else: # find the point x inside the box that is the nearest to # the sphere center: f_0 = zeros(3) for i in arange(3): f_0[i] = max(min(half_extents0[i], p_01[i]), -half_extents0[i]) f_g = Hg.pdot(H_g0, f_0) vec = p_g1 - f_g normal = vec / norm(vec) sdist = norm(vec) - radius1 H_gc0 = Hg.zaligned(normal) H_gc1 = H_gc0.copy() H_gc0[0:3, 3] = f_g H_gc1[0:3, 3] = p_g1 - radius1 * normal return (sdist, H_gc0, H_gc1)