Exemple #1
0
def get_har_forecast(dependent, lags, dist):

    import sys
    har_test = HARX(y=dependent, lags=lags, distribution=dist, rescale=True)
    index = dependent.index
    end_loc = np.where(index >= '2017-01-03')[0].min(
    )  #returns where index is greater than a date.
    forecasts = {}

    for i in range(
            890):  #878 values between the start and end of the OS dataset.
        sys.stdout.write('.')
        sys.stdout.flush()
        res = har_test.fit(first_obs=i,
                           last_obs=i + end_loc,
                           disp='off',
                           options={
                               'maxiter': 10000000,
                               'eps': 0.01,
                               'ftol': 0.0001
                           })
        #https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_slsqp.html
        temp = res.forecast(horizon=1).mean
        fcast = temp.iloc[i + end_loc - 1]
        forecasts[fcast.name] = fcast
    har_forecast = (pd.DataFrame(forecasts).T)
    return (har_forecast)
Exemple #2
0
    def test_forecast_exogenous_regressors(self):
        y = 10 * self.rng.randn(1000, 1)
        x = self.rng.randn(1000, 2)
        am = HARX(y=y, x=x, lags=[1, 2])
        res = am.fit()
        fcasts = res.forecast(horizon=1, start=1)

        const, har01, har02, ex0, ex1, _ = res.params
        y_01 = y[1:-1]
        y_02 = (y[1:-1] + y[0:-2]) / 2
        x0 = x[2:, :1]
        x1 = x[2:, 1:2]
        direct = const + har01 * y_01 + har02 * y_02 + ex0 * x0 + ex1 * x1
        direct = np.vstack(([[np.nan]], direct, [[np.nan]]))
        direct = pd.DataFrame(direct, columns=["h.1"])
        assert_allclose(np.asarray(direct), fcasts.mean)

        fcasts2 = res.forecast(horizon=2, start=1)
        assert fcasts2.mean.shape == (1000, 2)
        assert fcasts2.mean.isnull().all()["h.2"]
        assert_frame_equal(fcasts.mean, fcasts2.mean[["h.1"]])
Exemple #3
0
    def test_forecast_exogenous_regressors(self):
        y = self.rng.randn(1000, 1)
        x = self.rng.randn(1000, 2)
        am = HARX(y=y, x=x, lags=[1, 2])
        res = am.fit()
        fcasts = res.forecast(horizon=1, start=1)

        const, har01, har02, ex0, ex1, _ = res.params
        y_01 = y[1:-1]
        y_02 = (y[1:-1] + y[0:-2]) / 2
        x0 = x[2:, :1]
        x1 = x[2:, 1:2]
        direct = const + har01 * y_01 + har02 * y_02 + ex0 * x0 + ex1 * x1
        direct = np.vstack(([[np.nan]], direct, [[np.nan]]))
        direct = pd.DataFrame(direct, columns=['h.1'])
        assert_allclose(direct.values, fcasts.mean)

        fcasts2 = res.forecast(horizon=2, start=1)
        assert fcasts2.mean.shape == (1000, 2)
        assert fcasts2.mean.isnull().all()['h.2']
        assert_frame_equal(fcasts.mean, fcasts2.mean[['h.1']])
Exemple #4
0
    HARCH,
    HARX,
    ConstantMean,
    ConstantVariance,
    EWMAVariance,
    MIDASHyperbolic,
    RiskMetrics2006,
    ZeroMean,
    arch_model,
)
from arch.univariate.mean import _ar_forecast, _ar_to_impulse

SP500 = 100 * sp500.load()["Adj Close"].pct_change().dropna()

MEAN_MODELS = [
    HARX(SP500, lags=[1, 5]),
    ARX(SP500, lags=2),
    ConstantMean(SP500),
    ZeroMean(SP500),
]

VOLATILITIES = [
    ConstantVariance(),
    GARCH(),
    FIGARCH(),
    EWMAVariance(lam=0.94),
    MIDASHyperbolic(),
    HARCH(lags=[1, 5, 22]),
    RiskMetrics2006(),
    APARCH(),
    EGARCH(),
Exemple #5
0
 def model(self):
     return HARX(**self.__params, lags=self.__lags)
Exemple #6
0
 def __bic_with(self, lag_list):
     model = HARX(**self.__params, lags=lag_list)
     result = model.fit(update_freq=0, disp='off')
     return round(result.bic, 4)