Exemple #1
0
def get_items_with_pool(source_key: str,
                        count: int,
                        start_index: int = 0,
                        workers: int = 4) -> Items:
    """Concurrently reads items from API using Pool

    Args:
        source_key: a job or collection key, e.g. '112358/13/21'
        count: a number of items to retrieve
        start_index: an index to read from
        workers: the number of separate processors to get data in

    Returns:
        A list of items
    """
    active_connections_limit = 10
    processes_count = min(max(helpers.cpus_count(), workers),
                          active_connections_limit)
    batch_size = math.ceil(count / processes_count)

    items = []
    with Pool(processes_count) as p:
        results = p.starmap(
            partial(get_items, source_key, batch_size, p_bar=tqdm),
            zip([
                i for i in range(start_index, start_index + count, batch_size)
            ]),
        )
        for items_batch in results:
            items.extend(items_batch)
    return items
Exemple #2
0
def test_cpus_count_no_affinity(mocker):
    mocker.patch.object(h.os,
                        "sched_getaffinity",
                        create=True,
                        side_effect=AttributeError())
    mocker.patch.object(h.os, "cpu_count", create=True, return_value=2)
    assert h.cpus_count() == 2
Exemple #3
0
def get_items_with_pool(source_key: str,
                        count: int,
                        start_index: int,
                        workers: int = 4) -> np.ndarray:
    """Concurrently reads items from API using Pool

    Args:
        source_key: a job or collection key, e.g. '112358/13/21'
        count: a number of items to retrieve
        start_index: an index to read from
        workers: the number of separate processors to get data in

    Returns:
        A numpy array of items
    """
    active_connections_limit = 10
    processes_count = min(max(helpers.cpus_count(), workers),
                          active_connections_limit)
    batch_size = math.ceil(count / processes_count)

    start_idxs = range(start_index, start_index + count, batch_size)
    start = [f"{source_key}/{i}" for i in start_idxs]
    with Pool(processes_count) as p:
        results = p.starmap(
            partial(get_items, source_key, batch_size, p_bar=tqdm),
            zip(start_idxs, start),
        )
        return np.concatenate(results)
Exemple #4
0
def test_cpus_count(mocker):
    mocker.patch.object(h.os,
                        "sched_getaffinity",
                        create=True,
                        return_value={0, 1, 2, 3})
    assert h.cpus_count() == 4