Exemple #1
0
def build_model(args, i_cv):
    args.net = ARCHI(n_in=29, n_out=2, n_unit=args.n_unit)
    args.adv_net = ARCHI(n_in=2, n_out=2, n_unit=args.n_unit)
    args.net_optimizer = get_optimizer(args)
    args.adv_optimizer = get_optimizer(args, args.adv_net)
    args.net_criterion = WeightedCrossEntropyLoss()
    args.adv_criterion = WeightedGaussEntropyLoss()
    model = get_model(args, PivotClassifier)
    model.set_info(DATA_NAME, BENCHMARK_NAME, i_cv)
    return model
def build_model(args, i_cv):
    args.net = ARCHI(n_in=3, n_out=2, n_unit=args.n_unit)
    args.optimizer = get_optimizer(args)
    model = get_model(args, NeuralNetClassifier)
    model.base_name = "DataAugmentation"
    model.set_info(DATA_NAME, BENCHMARK_NAME, i_cv)
    return model
def build_model(args, i_cv):
    args.net = ARCHI(n_in=29, n_out=N_BINS, n_unit=args.n_unit)
    args.optimizer = get_optimizer(args)
    args.criterion = HiggsLoss()
    model = get_model(args, Inferno)
    model.set_info(DATA_NAME, BENCHMARK_NAME, i_cv)
    return model
def load_some_NN(i_cv=0, cuda=False):
    from model.neural_network import NeuralNetClassifier
    from archi.classic import L4 as ARCHI
    import torch.optim as optim
    n_unit = 200
    net = ARCHI(n_in=29, n_out=2, n_unit=n_unit)
    optimizer = optim.Adam(net.parameters(), lr=1e-3)
    model = NeuralNetClassifier(net, optimizer, n_steps=15000, batch_size=10000, cuda=cuda)
    model.set_info(DATA_NAME, BENCHMARK_NAME, i_cv)
    print(f"loading {model.model_path}")
    model.load(model.model_path)
    return model
Exemple #5
0
def build_model(args, i_cv):
    args.net = ARCHI(n_in=1, n_out=2, n_unit=args.n_unit)
    args.optimizer = get_optimizer(args)
    model = get_model(args, TangentPropClassifier)
    model.set_info(DATA_NAME, BENCHMARK_NAME, i_cv)
    return model
Exemple #6
0
def build_model(args, i_cv):
    args.net = ARCHI(n_in=1, n_out=2, n_unit=args.n_unit)
    args.optimizer = get_optimizer(args)
    model = get_model(args, NeuralNetClassifier)
    model.set_info(DATA_NAME, f"{BENCHMARK_NAME}/learning_curve", i_cv)
    return model