torch.backends.cudnn.benchmark = True

    transform = transforms.Compose(
        [
            transforms.Resize(args.size),
            transforms.CenterCrop(args.size),
            transforms.ToTensor(),
            transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
        ]
    )
    # TODO use a little set for sanity check
    # _, loader, _ = iPERLoader(data_root=args.path, batch=args.batch_size, transform=transform).data_load()
    _, _, loader = iPERLoader(data_root=args.path, batch=args.batch_size, transform=transform).data_load()

    # model for image
    model_img = AppVQVAE().to(device)
    model_img = nn.DataParallel(model_img).to(device)
    if is_load_model_img is True:
        print('Loading model_img ...', end='')
        model_img.load_state_dict(torch.load(args.model_img_path))
        model_img.eval()
        print('Done')
    else:
        print('model_img Initialized.')
    optimizer_img = optim.Adam(model_img.parameters(), lr=args.lr)

    # model for condition
    model_cond = VQVAE().to(device)
    model_cond = nn.DataParallel(model_cond).cuda()
    if is_load_model_cond is True:
        print('Loading model_cond ...', end='')
Exemple #2
0
    torch.backends.cudnn.benchmark = True

    transform = transforms.Compose([
        transforms.Resize(args.size),
        transforms.CenterCrop(args.size),
        transforms.ToTensor(),
        transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
    ])
    # TODO use a little set for sanity check
    # _, loader, _ = iPERLoader(data_root=args.path, batch=args.batch_size, transform=transform).data_load()
    _, _, loader = iPERLoader(data_root=args.path,
                              batch=args.batch_size,
                              transform=transform).data_load()

    # model for image
    model_img = AppVQVAE().to(device)
    model_img = nn.DataParallel(model_img).to(device)
    if is_load_model_img is True:
        print('Loading model_img ...', end='')
        model_img.load_state_dict(torch.load(args.model_img_path))
        model_img.eval()
        print('Done')
    else:
        print('model_img Initialized.')
    optimizer_img = optim.Adam(model_img.parameters(), lr=args.lr)

    # model for condition
    model_cond = VQVAE().to(device)
    model_cond = nn.DataParallel(model_cond).cuda()
    if is_load_model_cond is True:
        print('Loading model_cond ...', end='')