def test_vega_icon(): vega = vega_icon(1900, 1410, [-73.998427, 40.730309, -73.954348, 40.780816], "icon_path", "EPSG:3857").build() vega_dict = json.loads(vega) assert vega_dict["width"] == 1900 assert vega_dict["height"] == 1410 assert vega_dict["marks"][0]["encode"]["enter"]["bounding_box"]["value"][ 0] == -73.998427 assert vega_dict["marks"][0]["encode"]["enter"]["bounding_box"]["value"][ 1] == 40.730309 assert vega_dict["marks"][0]["encode"]["enter"]["bounding_box"]["value"][ 2] == -73.954348 assert vega_dict["marks"][0]["encode"]["enter"]["bounding_box"]["value"][ 3] == 40.780816 assert vega_dict["marks"][0]["encode"]["enter"]["icon_path"][ "value"] == "icon_path" assert vega_dict["marks"][0]["encode"]["enter"]["coordinate_system"][ "value"] == "EPSG:3857" vega = vega_icon(1900, 1410, [-73.998427, 40.730309, -73.954348, 40.780816], "icon_path").build() vega_dict = json.loads(vega) assert vega_dict["marks"][0]["encode"]["enter"]["coordinate_system"][ "value"] == "EPSG:3857"
def test_icon_viz(): x_data = [] y_data = [] x_data.append(-73.96524) x_data.append(-73.96118) x_data.append(-73.97324) x_data.append(-73.98456) y_data.append(40.73747) y_data.append(40.74507) y_data.append(40.75890) y_data.append(40.77654) arr_x = pandas.Series(x_data) arr_y = pandas.Series(y_data) points = arctern.ST_Point(arr_x, arr_y) import os dir_path = os.path.dirname(os.path.realpath(__file__)) png_path = dir_path + "/../images/taxi.png" vega = vega_icon( 1024, 896, bounding_box=[-73.998427, 40.730309, -73.954348, 40.780816], icon_path=png_path, coordinate_system="EPSG:4326") icon_buf = arctern.icon_viz_layer(vega, points) save_png(icon_buf, "/tmp/test_icon_viz.png")
def iconviz(ax, points, bounding_box, icon_path, coordinate_system='EPSG:3857', **extra_contextily_params): """ Plots an icon map in Matplotlib. Parameters ---------- ax : matplotlib.axes.Axes Axes where geometries will be plotted. points : GeoSeries Sequence of points. bounding_box : list Bounding box of the map. For example, [west, south, east, north]. icon_path : str Absolute path to icon file. coordinate_system : str, optional The Coordinate Reference System (CRS) set to all geometries, by default 'EPSG:3857'. Only supports SRID as a WKT representation of CRS by now. **extra_contextily_params: dict Extra parameters passed to `contextily.add_basemap. <https://contextily.readthedocs.io/en/latest/reference.html>`_ Examples ------- >>> import pandas as pd >>> import numpy as np >>> import arctern >>> import matplotlib.pyplot as plt >>> # read from test_data.csv >>> # Download link: https://raw.githubusercontent.com/arctern-io/arctern-resources/benchmarks/benchmarks/dataset/layer_rendering_test_data/test_data.csv >>> df = pd.read_csv("/path/to/test_data.csv", dtype={'longitude':np.float64, 'latitude':np.float64, 'color_weights':np.float64, 'size_weights':np.float64, 'region_boundaries':np.object}, nrows=10) >>> points = arctern.GeoSeries.point(df['longitude'], df['latitude']) >>> # plot icon visualization >>> # Download icon-viz.png : https://raw.githubusercontent.com/arctern-io/arctern-docs/master/img/icon/icon-viz.png >>> fig, ax = plt.subplots(figsize=(10, 6), dpi=200) >>> arctern.plot.iconviz(ax, points, bounding_box=[-74.01424568752932, 40.72759334104623, -73.96056823889673, 40.76721122683304], icon_path='/path/to/icon-viz.png', coordinate_system='EPSG:4326') >>> plt.show() """ from matplotlib import pyplot as plt import contextily as cx bbox = _transform_bbox(bounding_box, coordinate_system, 'epsg:3857') w, h = _get_recom_size(bbox[2] - bbox[0], bbox[3] - bbox[1]) vega = vega_icon(w, h, bounding_box=bounding_box, icon_path=icon_path, coordinate_system=coordinate_system) hexstr = arctern.icon_viz_layer(vega, points) f = io.BytesIO(base64.b64decode(hexstr)) img = plt.imread(f) ax.set(xlim=(bbox[0], bbox[2]), ylim=(bbox[1], bbox[3])) cx.add_basemap(ax, **extra_contextily_params) ax.imshow(img, alpha=img[:, :, 3], extent=(bbox[0], bbox[2], bbox[1], bbox[3])) ax.axis('off')
def draw_icon_viz(spark): start_time = time.time() df = spark.read.format("csv").option("header", True).option("delimiter", ",").schema( "VendorID string, tpep_pickup_datetime timestamp, tpep_dropoff_datetime timestamp, passenger_count long, trip_distance double, pickup_longitude double, pickup_latitude double, dropoff_longitude double, dropoff_latitude double, fare_amount double, tip_amount double, total_amount double, buildingid_pickup long, buildingid_dropoff long, buildingtext_pickup string, buildingtext_dropoff string").load( "file:///tmp/0_5M_nyc_taxi_and_building.csv").cache() df.createOrReplaceTempView("nyc_taxi") register_funcs(spark) res = spark.sql("select ST_Point(pickup_longitude, pickup_latitude) as point from nyc_taxi where ST_Within(ST_Point(pickup_longitude, pickup_latitude), ST_GeomFromText('POLYGON ((-73.998427 40.730309, -73.954348 40.730309, -73.954348 40.780816 ,-73.998427 40.780816, -73.998427 40.730309))'))") icon_path = "/tmp/taxi.png" vega = vega_icon(1024, 896, [-73.998427, 40.730309, -73.954348, 40.780816], icon_path, "EPSG:4326") res = icon_viz(vega, res) save_png(res, '/tmp/icon_viz.png') spark.sql("show tables").show() spark.catalog.dropGlobalTempView("nyc_taxi") print("--- %s seconds ---" % (time.time() - start_time))
def test_icon_viz(): x_data = [] y_data = [] for i in range(5): x_data.append(i * 100) y_data.append(i * 100) arr_x = pandas.Series(x_data) arr_y = pandas.Series(y_data) points = arctern.ST_Point(arr_x, arr_y) import os dir_path = os.path.dirname(os.path.realpath(__file__)) png_path = dir_path + "/../images/taxi.png" vega = vega_icon(800, 600, [-73.998427, 40.730309, -73.954348, 40.780816], png_path, "EPSG:43") icon_buf = arctern.icon_viz(vega, points) save_png(icon_buf, "/tmp/test_icon_viz.png")
def iconviz(ax, points, bounding_box, icon_path, coordinate_system='EPSG:3857', **extra_contextily_params): """ :type ax: AxesSubplot :param ax: Matplotlib axes object on which to add the basemap. :type points: Series(dtype: object) :param points: Points in WKB form :type bounding_box: (float, float, float, float) :param bounding_box: The bounding rectangle, as a [left, upper, right, lower]-tuple. value should be of :coordinate_system: :type coordinate_system: str :param coordinate_system: either 'EPSG:4326' or 'EPSG:3857' :type extra_contextily_params: dict :param extra_contextily_params: extra parameters for contextily.add_basemap. See https://contextily.readthedocs.io/en/latest/reference.html """ from matplotlib import pyplot as plt import contextily as cx bbox = _transform_bbox(bounding_box, coordinate_system, 'epsg:3857') w, h = _get_recom_size(bbox[2] - bbox[0], bbox[3] - bbox[1]) vega = vega_icon(w, h, bounding_box=bounding_box, icon_path=icon_path, coordinate_system=coordinate_system) hexstr = arctern.icon_viz_layer(vega, points) f = io.BytesIO(base64.b64decode(hexstr)) img = plt.imread(f) ax.set(xlim=(bbox[0], bbox[2]), ylim=(bbox[1], bbox[3])) cx.add_basemap(ax, **extra_contextily_params) ax.imshow(img, alpha=img[:, :, 3], extent=(bbox[0], bbox[2], bbox[1], bbox[3]))
def iconviz(ax, points, bounding_box, icon_path, coordinate_system='EPSG:3857', **extra_contextily_params): """ Plot points as icons on map in Matplotlib :type ax: AxesSubplot :param ax: Matplotlib axes object on which to add the basemap. :type points: GeoSeries :param points: Sequence of Points :type bounding_box: list :param bounding_box: Specify the bounding rectangle [west, south, east, north]. :type icon_path: str :param icon_path: Absolute path to icon file :type coordinate_system: str :param coordinate_system: Coordinate Reference System of the geometry objects. Must be SRID formed, e.g. 'EPSG:4326' or 'EPSG:3857' Default as 'EPSG:3857' :type extra_contextily_params: dict :param extra_contextily_params: Extra parameters will be passed to contextily.add_basemap. See https://contextily.readthedocs.io/en/latest/reference.html for details :example: >>> import pandas as pd >>> import numpy as np >>> import arctern >>> import matplotlib.pyplot as plt >>> # read from test_data.csv >>> # Download link: https://raw.githubusercontent.com/arctern-io/arctern-resources/benchmarks/benchmarks/dataset/layer_rendering_test_data/test_data.csv >>> df = pd.read_csv("/path/to/test_data.csv", dtype={'longitude':np.float64, 'latitude':np.float64, 'color_weights':np.float64, 'size_weights':np.float64, 'region_boundaries':np.object}, nrows=10) >>> points = arctern.GeoSeries.point(df['longitude'], df['latitude']) >>> # plot icon visualization >>> # Download icon-viz.png : https://raw.githubusercontent.com/arctern-io/arctern-docs/master/img/icon/icon-viz.png >>> fig, ax = plt.subplots(figsize=(10, 6), dpi=200) >>> arctern.plot.iconviz(ax, points, bounding_box=[-74.01424568752932, 40.72759334104623, -73.96056823889673, 40.76721122683304], icon_path='/path/to/icon-viz.png', coordinate_system='EPSG:4326') >>> plt.show() """ from matplotlib import pyplot as plt import contextily as cx bbox = _transform_bbox(bounding_box, coordinate_system, 'epsg:3857') w, h = _get_recom_size(bbox[2] - bbox[0], bbox[3] - bbox[1]) vega = vega_icon(w, h, bounding_box=bounding_box, icon_path=icon_path, coordinate_system=coordinate_system) hexstr = arctern.icon_viz_layer(vega, points) f = io.BytesIO(base64.b64decode(hexstr)) img = plt.imread(f) ax.set(xlim=(bbox[0], bbox[2]), ylim=(bbox[1], bbox[3])) cx.add_basemap(ax, **extra_contextily_params) ax.imshow(img, alpha=img[:, :, 3], extent=(bbox[0], bbox[2], bbox[1], bbox[3])) ax.axis('off')
def db_query(): """ /db/query handler """ log.INSTANCE.info('POST /db/query: {}'.format(request.json)) if not utils.check_json(request.json, 'id') \ or not utils.check_json(request.json, 'query') \ or not utils.check_json(request.json['query'], 'type') \ or not utils.check_json(request.json['query'], 'sql'): return jsonify(status='error', code=-1, message='query format error') query_sql = request.json['query']['sql'] query_type = request.json['query']['type'] content = {} content['sql'] = query_sql content['err'] = False db_instance = db.CENTER.get(str(request.json['id']), None) if db_instance is None: return jsonify(status="error", code=-1, message='there is no database whose id equal to ' + str(request.json['id'])) if query_type == 'sql': res = db_instance.run_for_json(query_sql) data = [] for row in res: obj = json.loads(row) data.append(obj) content['result'] = data else: if not utils.check_json(request.json['query'], 'params'): return jsonify(status='error', code=-1, message='query format error') query_params = request.json['query']['params'] res = db_instance.run(query_sql) if query_type == 'point': vega = vega_pointmap(int(query_params['width']), int(query_params['height']), query_params['point']['bounding_box'], int(query_params['point']['point_size']), query_params['point']['point_color'], float(query_params['point']['opacity']), query_params['point']['coordinate_system']) data = pointmap(vega, res) content['result'] = data elif query_type == 'heat': vega = vega_heatmap(int(query_params['width']), int(query_params['height']), query_params['heat']['bounding_box'], float(query_params['heat']['map_zoom_level']), query_params['heat']['coordinate_system'], query_params['heat']['aggregation_type']) data = heatmap(vega, res) content['result'] = data elif query_type == 'choropleth': vega = vega_choroplethmap( int(query_params['width']), int(query_params['height']), query_params['choropleth']['bounding_box'], query_params['choropleth']['color_gradient'], query_params['choropleth']['color_bound'], float(query_params['choropleth']['opacity']), query_params['choropleth']['coordinate_system'], query_params['choropleth']['aggregation_type']) data = choroplethmap(vega, res) content['result'] = data elif query_type == 'weighted': vega = vega_weighted_pointmap( int(query_params['width']), int(query_params['height']), query_params['weighted']['bounding_box'], query_params['weighted']['color_gradient'], query_params['weighted']['color_bound'], query_params['weighted']['size_bound'], float(query_params['weighted']['opacity']), query_params['weighted']['coordinate_system']) data = weighted_pointmap(vega, res) content['result'] = data elif query_type == 'icon': vega = vega_icon(int(query_params['width']), int(query_params['height']), query_params['icon']['bounding_box'], query_params['icon']['icon_path'], query_params['icon']['coordinate_system']) data = icon_viz(vega, res) content['result'] = data else: return jsonify(status="error", code=-1, message='{} not support'.format(query_type)) return jsonify(status="success", code=200, data=content)
vega = vega_choroplethmap(1024, 384, bounding_box=[pos1[0], pos1[1], pos2[0], pos2[1]], color_gradient=["#115f9a", "#d0f400"], color_bound=[2.5, 5], opacity=1.0, coordinate_system="EPSG:4326") png = choropleth_map_layer(vega, ST_GeomFromText(pickup_df.buildingtext_pickup), df.head(limit_num).fare_amount) save_png(png, "/tmp/arctern_choroplethmap_pandas.png") vega = vega_icon(1024, 384, bounding_box=[pos1[0], pos1[1], pos2[0], pos2[1]], icon_path='/path/to/arctern-color.png', coordinate_system="EPSG:4326") png = icon_viz_layer( vega, ST_Point( pickup_df.head(25).pickup_longitude, pickup_df.head(25).pickup_latitude)) save_png(png, "/tmp/arctern_iconviz_pandas.png") vega = vega_fishnetmap(1024, 384, bounding_box=[pos1[0], pos1[1], pos2[0], pos2[1]], cell_size=8, cell_spacing=1, opacity=1.0,