ax7 = p.subplot2grid((17, 5), (8, 1), rowspan=8) ax8 = p.subplot2grid((17, 5), (8, 2), rowspan=8) ax9 = p.subplot2grid((17, 5), (8, 3), rowspan=8) ax10 = p.subplot2grid((17, 5), (8, 4), rowspan=8) cbar = p.subplot2grid((17, 5), (16, 0), colspan=4) cbar2 = p.subplot2grid((17, 5), (16, 4), colspan=4) axes = [ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8, ax9, ax10] nums = [0, 5, 10, 15, 20, 25, 30, 35, 40] cmin = 0.9 cmax = 2.1 for j in np.arange(len(nums)): sn = arepo.Simulation("../output/snap_%.3d.hdf5" % nums[j]) sn.plot_AMRslice(sn.rho, axes=axes[j], colorbar=False, cmap='parula', res=2048, vmin=cmin, vmax=cmax, gradient=sn.grar) axes[j].xaxis.set_visible(False) axes[j].yaxis.set_visible(False) axes[j].set_frame_on(False) axes[j].annotate("t = %.2g" % sn.time, [0.02, 1.87], color='black') arr = np.arange(0, 256)
import matplotlib.pyplot as p import arepo import numpy as np toinch = 0.393700787 p.figure(figsize=np.array([14.7, 5]) * toinch, dpi=300) ax1 = p.subplot2grid((1, 3), (0, 0)) ax2 = p.subplot2grid((1, 3), (0, 1)) ax3 = p.subplot2grid((1, 3), (0, 2)) axes = [ax1, ax2, ax3] nums = [0, 100, 200] for j in np.arange(len(nums)): sn = arepo.Simulation("../output_static/snap_%.3d.hdf5" % nums[j]) sn.plot_AMRslice(sn.rho, axes=axes[j], colorbar=False) axes[j].xaxis.set_visible(False) axes[j].yaxis.set_visible(False) axes[j].set_frame_on(False) axes[j].annotate("t = %.2g" % sn.time, [0.02, 0.9], color='white') p.tight_layout() p.show() p.savefig("KH_time.pdf", dpi=300)
import matplotlib.pyplot as p import arepo import numpy as np toinch = 0.393700787 p.figure(figsize=np.array([14.7,10])*toinch, dpi=300) sn = arepo.Simulation("../output_2d/snap_%.3d.hdf5"%10) sn.plot_radprof(sn.rho, label="t = %.2g"%sn.time, bins = 200) t = np.loadtxt("output_2d.dat",skiprows=2) p.plot(t[:,1],t[:,2], label="analytical solution",zorder=0) p.legend(loc=4, frameon=False, fontsize=9) p.tight_layout() p.show() p.savefig("sedov_profile_2d.pdf", dpi=300)
import matplotlib.pyplot as p import arepo import numpy as np toinch = 0.393700787 p.figure(figsize=np.array([14.7 * 2. / 3, 5]) * toinch, dpi=300) ax1 = p.subplot2grid((1, 2), (0, 0)) ax2 = p.subplot2grid((1, 2), (0, 1)) axes = [ax1, ax2] sims = [ '../output_amr/snap_200.hdf5', '../output_amr_nosmoothing/snap_200.hdf5' ] label = ["AMR", "AMR no smoothing"] for j in np.arange(len(sims)): sn = arepo.Simulation(sims[j]) sn.plot_AMRslice(sn.amrlevel, axes=axes[j], colorbar=False, cmap="RdBu") axes[j].xaxis.set_visible(False) axes[j].yaxis.set_visible(False) axes[j].set_frame_on(False) axes[j].annotate(label[j], [0.02, 0.9], color='white') p.tight_layout() p.show() p.savefig("KH_amrlevel.pdf", dpi=300)
#!/usr/bin/env python import numpy as np import sys from argparse import ArgumentParser import matplotlib.pyplot as plt import arepo from grad import analytic_grad_rho parser = ArgumentParser() parser.add_argument("snapshot") args = parser.parse_args() out = arepo.Simulation(args.snapshot) # Discard border cells x, y, z = out.pos.T margin = 0.1 inside = (x > margin) & (x < 1 - margin) & (y > margin) & (y < 1 - margin) theta = np.deg2rad(57) gx, gy, gz = out.grar[inside, :].T # Reference gradient (analytic) grefx, grefy, grefz = analytic_grad_rho(x[inside], y[inside]) err = np.sqrt((gx - grefx)**2 + (gy - grefy)**2 + (gz - grefz)**2) print "Gradient error (max, L2):", np.max(err), np.sqrt(np.mean(err**2))