def main(): args = arg.preprocess_args() data = helper.get_data(folder=args.folder, data_file=args.data) print('data_loaded') append(data, args) for i in range(10): append(data, args, str(i), '_')
def main(): args = arg.preprocess_args() rand = random.randint(0, 9999999) data, _ = helper.pre_processed_data(args, rand, dry=False) # data = data.reshape(-1,48,48) if args.mean: label, _ = helper.pre_processed_label(args, rand, dry=False) data = preprocess.mean_image(label, data) elif args.split is not None or args.randomize: label, _ = helper.pre_processed_label(args, rand, dry=False) helper.write_data_to_file( (args.folder or helper.FOLDER) + (args.name or 'processed_data') + '_l' + helper.EXT, label, fmt='%d', h='0') # for i in range(4): # for j in range(4): helper.write_data_to_file( (args.folder or helper.FOLDER) + (args.name or 'processed_data') # + str(i) + str(j) + helper.EXT, data, # [k[i*12:(i*12)+12,j*12:(j*12)+12].flatten() for k in data], h=', '.join(str(i) for i in range(len(data[0]))))
def main(): args = arg.preprocess_args() rand = 0 data, _ = helper.pre_processed_data_all(args, rand, dry=False) if args.mean: rand = random.randint(0, 9999999) label, _ = helper.pre_processed_label_all(args, rand, dry=False) data = preprocess.mean_image(label, data) helper.create_images_from_rows((args.name or 'img'), data)
def main(): args = arg.preprocess_args() rand = random.randint(0, 9999999) data, _ = helper.pre_processed_data_all(args, rand, dry=False) if args.mean: label, _ = helper.pre_processed_label_all(args, rand, dry=False) data = preprocess.mean_image(label, data) elif args.split is not None or args.randomize: label, _ = helper.pre_processed_label(args, rand, dry=False) helper.write_data_to_file( (args.folder or helper.FOLDER) + (args.name or 'processed_data') + '_l' + helper.EXT, label, fmt='%d', h='0') # for i in range(4): # for j in range(4): helper.write_data_to_file((args.folder or helper.FOLDER) + (args.name or 'processed_data') + helper.EXT, data, h=', '.join(str(i) for i in range(len(data[0]))))