Exemple #1
0
def check(n):
    '''checks if n,  kn have the same digits'''
    L=aritmetica.digitos(n)

    for k in range(2,7):    
        Lk=aritmetica.digitos(n*k)   
        if sorted(L)!= sorted(Lk):
            return False
    return True
Exemple #2
0
def permuta3(m):
    C=[]
    for p in next_permutation(sorted(digitos(m))):
        k=l2i(p)
        if k in CUBOS:
            C.append(k)
            
    return set(C)
Exemple #3
0
def Bouncy(n):
    l = digitos(n)
    if len(l)<3: return False
    
    SG=map(signo,[par[1]-par[0]  for par  in pairwise(l)])
    #print SG
    
    if 1 in SG and -1 in SG:
        return True
    else:
        return False
Exemple #4
0
from operator import mul
from aritmetica import factorial

print "precalculando..."

CUBOS = {n**3 for n in range(10**6)}
DIGITOS=[1,2,3,4,5,6,7,8,9,0]
D={}

def lista2num(L):
    l=L[::-1]
    return     sum( [a*10**(k) for (k,a) in enumerate(l)])

def overcount(p):
    repeticiones= map(factorial, filter(lambda x: x>1, [p.count(d) for d in range(10)]))
    sobreconteo = reduce(mul, repeticiones, 1)

    return sobreconteo

for n in xrange(1,1000):
    dig = digitos(n**3)
    #print dig
    v={lista2num(p) for p in permutations(dig) if lista2num(p) in CUBOS and p[0]!=0}
    ncubos = len(v)
    #print n, n**3, "\t",len(v), ncubos, v
    if ncubos == 5: 
        print n
        break
        
print overcount(digitos(345**3))
print 345**3
Exemple #5
0
def f(n):
    return sum(map(factorial, digitos(n)))
Exemple #6
0
# -*- coding: utf-8 -*-
'''Problem 70
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number of positive numbers less than or equal to n which are relatively prime to n. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, φ(9)=6.
The number 1 is considered to be relatively prime to every positive number, so φ(1)=1.

Interestingly, φ(87109)=79180, and it can be seen that 87109 is a permutation of 79180.

Find the value of n, 1 < n < 107, for which φ(n) is a permutation of n and the ratio n/φ(n) produces a minimum.'''

from __future__ import division

from aritmetica import factoriza
from aritmetica import totient
from aritmetica import ndigitos
from aritmetica import digitos
import aritmetica
import time

Tt=time.time()

MIN=1.1
for n in xrange(2,10**7):
    t = totient(n)
    #print n, t
    if (ndigitos(t) == ndigitos(n)) and (n/t<MIN) and (sorted(digitos(t))==sorted(digitos(n))):
        print n, t, n/t
        MIN=n/t
                    
print "\n====\n", time.time()-Tt
Exemple #7
0
def f(n):
    return sum([Factoriales[d] for d in digitos(n)])
Exemple #8
0
from aritmetica import digitos
from collections import Counter

C = {}
#Fill the dictionary
SOLUTIONS = set()

for n in xrange(2,10000):
	z=tuple(sorted(digitos(n**3)))
	D= C.get(z,[])
	D.append(n)
	C[z] = D

MINI = 100000000
for k in C:
	if len(C[k])==5: 
		newmin = min(C[k])
		if newmin < MINI:
			MINI = newmin

print MINI**3