def bubble(array): list1 = array.tolist() n = len(list1) for f in range(n): for k in range(n - f - 1): if array[k] > array[k + 1]: array[k], array[k + 1] = array[k + 1], array[k] return array
def merge_sort(array): list1 = array.tolist() if len(list1) < 2: return list1 midpoint = len(list1) // 2 return merge(left=merge_sort(array[:midpoint]), right=merge_sort(array[midpoint:]))
def insert(array): list1 = array.tolist() for f in range(1, len(list1)): item = list1[f] k = f - 1 while k >= 0 and list1[k] > item: list1[k + 1] = list1[k] k -= 1 list1[k + 1] = item return list1
def trim(self, snd_data): #removes empty audio at the end of the sample soundsList = array.tolist( snd_data) #creates a list from the recorded audio array trimmedSound = array('h') for i in range( len(soundsList) - 70000 ): #for the length of the recorded audio minus the last second trimmedSound.append( soundsList[i]) #add from the list to the new trimmed array return trimmedSound # return the trimmed audio
def getSelectedScanIssues(self): issues = self.ctxMenuInvocation.getSelectedIssues() # parses currently selected finding to a string if len(issues) >= 1 : # one or more issues can be sent (cmd select for example within target...) for self.m in issues: #print self.m # burp.sfg@3b784b06 # type <type 'burp.sfg'> # add requestResponseWithMarkers to be global so can be included in scanIssue requestResponse = self.m.getHttpMessages() #print "RequestResponse: ", requestResponse # returns l = array.tolist(requestResponse) #print l #print l[0] # if there is more than one request response to a finding... if len(l) > 1: k = len(l) q = 1 for r in l: #call functionality to handle issues self.processRequest(r, q, k) q = q + 1 elif len(l) == 1: k = "" q = "" #call functionality to handle issues self.processRequest(l[0], q, k) else: # bug: some issues do not have request responses. k = "" q = "" #call functionality to handle issues self.processRequestWithoutRR(q, k)
def get_torch_image(img, rows, cols, size, idx): img = np.array(array.tolist(img), dtype=np.uint8) img = img.reshape(10000, rows, cols) timg = img[idx,:,:] return timg
def trim(self,snd_data): #removes empty audio at the end of the sample soundsList = array.tolist(snd_data) #creates a list from the recorded audio array trimmedSound = array('h') for i in range (len(soundsList)-70000): #for the length of the recorded audio minus the last second trimmedSound.append(soundsList[i]) #add from the list to the new trimmed array return trimmedSound # return the trimmed audio