def forward(nn_np, data): """ Given a dictionary representing a feed forward neural net and an input data matrix compute the network's output and store it within the dictionary :param nn: neural network dictionary :param data: a numpy n by m matrix where m in the number of input units in nn :return: the output layer activations """ nn = af.array(nn_np.ctypes.data, nn_np.shape, nn_np.dtype.char) nn['activations'] = [data] nn['zs'] = [] for w, s, b in map(None, nn['weights'], nn['nonlin'], nn['biases']): z = af.dot(w, af.transpose(nn['activations'][-1])) + b nn['zs'].append(af.transpose(z)) nn['activations'].append(s[0](af.transpose(z))) return nn['activations'][-1]
#!/usr/bin/python ####################################################### # Copyright (c) 2015, ArrayFire # All rights reserved. # # This file is distributed under 3-clause BSD license. # The complete license agreement can be obtained at: # http://arrayfire.com/licenses/BSD-3-Clause ######################################################## import arrayfire as af import array as host a = af.array([1, 2, 3]) af.display(a) print(a.elements(), a.type(), a.dims(), a.numdims()) print(a.is_empty(), a.is_scalar(), a.is_column(), a.is_row()) print(a.is_complex(), a.is_real(), a.is_double(), a.is_single()) print(a.is_real_floating(), a.is_floating(), a.is_integer(), a.is_bool()) a = af.array(host.array('i', [4, 5, 6])) af.display(a) print(a.elements(), a.type(), a.dims(), a.numdims()) print(a.is_empty(), a.is_scalar(), a.is_column(), a.is_row()) print(a.is_complex(), a.is_real(), a.is_double(), a.is_single()) print(a.is_real_floating(), a.is_floating(), a.is_integer(), a.is_bool()) a = af.array(host.array('l', [7, 8, 9] * 3), (3, 3)) af.display(a) print(a.elements(), a.type(), a.dims(), a.numdims()) print(a.is_empty(), a.is_scalar(), a.is_column(), a.is_row())
#!/usr/bin/python ####################################################### # Copyright (c) 2015, ArrayFire # All rights reserved. # # This file is distributed under 3-clause BSD license. # The complete license agreement can be obtained at: # http://arrayfire.com/licenses/BSD-3-Clause ######################################################## import arrayfire as af from arrayfire import parallel_range import array as host a = af.randu(5, 5) af.display(a) b = af.array(a) af.display(b) c = a.copy() af.display(c) af.display(a[0, 0]) af.display(a[0]) af.display(a[:]) af.display(a[:, :]) af.display(a[0:3, ]) af.display(a[-2:-1, -1]) af.display(a[0:5]) af.display(a[0:5:2]) idx = af.array(host.array('i', [0, 3, 2])) af.display(idx)
#!/usr/bin/python import arrayfire as af import array as host a = af.array([1, 2, 3]) af.print_array(a) print(a.elements(), a.type(), a.dims(), a.numdims()) print(a.is_empty(), a.is_scalar(), a.is_column(), a.is_row()) print(a.is_complex(), a.is_real(), a.is_double(), a.is_single()) print(a.is_real_floating(), a.is_floating(), a.is_integer(), a.is_bool()) a = af.array(host.array('d', [4, 5, 6])) af.print_array(a) print(a.elements(), a.type(), a.dims(), a.numdims()) print(a.is_empty(), a.is_scalar(), a.is_column(), a.is_row()) print(a.is_complex(), a.is_real(), a.is_double(), a.is_single()) print(a.is_real_floating(), a.is_floating(), a.is_integer(), a.is_bool()) a = af.array(host.array('l', [7, 8, 9] * 4), (2, 5)) af.print_array(a) print(a.elements(), a.type(), a.dims(), a.numdims()) print(a.is_empty(), a.is_scalar(), a.is_column(), a.is_row()) print(a.is_complex(), a.is_real(), a.is_double(), a.is_single()) print(a.is_real_floating(), a.is_floating(), a.is_integer(), a.is_bool())
#!/usr/bin/python ####################################################### # Copyright (c) 2015, ArrayFire # All rights reserved. # # This file is distributed under 3-clause BSD license. # The complete license agreement can be obtained at: # http://arrayfire.com/licenses/BSD-3-Clause ######################################################## import arrayfire as af from arrayfire import parallel_range import array as host a = af.randu(5, 5) af.display(a) b = af.array(a) af.display(b) c = a.copy() af.display(c) af.display(a[0,0]) af.display(a[0]) af.display(a[:]) af.display(a[:,:]) af.display(a[0:3,]) af.display(a[-2:-1,-1]) af.display(a[0:5]) af.display(a[0:5:2]) idx = af.array(host.array('i', [0, 3, 2])) af.display(idx)
#!/usr/bin/python ####################################################### # Copyright (c) 2015, ArrayFire # All rights reserved. # # This file is distributed under 3-clause BSD license. # The complete license agreement can be obtained at: # http://arrayfire.com/licenses/BSD-3-Clause ######################################################## import arrayfire as af import array as host a = af.array([1, 2, 3]) af.display(a) print(a.elements(), a.type(), a.dims(), a.numdims()) print(a.is_empty(), a.is_scalar(), a.is_column(), a.is_row()) print(a.is_complex(), a.is_real(), a.is_double(), a.is_single()) print(a.is_real_floating(), a.is_floating(), a.is_integer(), a.is_bool()) a = af.array(host.array("i", [4, 5, 6])) af.display(a) print(a.elements(), a.type(), a.dims(), a.numdims()) print(a.is_empty(), a.is_scalar(), a.is_column(), a.is_row()) print(a.is_complex(), a.is_real(), a.is_double(), a.is_single()) print(a.is_real_floating(), a.is_floating(), a.is_integer(), a.is_bool()) a = af.array(host.array("l", [7, 8, 9] * 3), (3, 3)) af.display(a) print(a.elements(), a.type(), a.dims(), a.numdims())