Exemple #1
0
def test_generate(fix_get_mnist_subset, image_dl_estimator_for_attack):
    classifier_list = image_dl_estimator_for_attack(SquareAttack)

    if classifier_list is None:
        logging.warning(
            "Couldn't perform this test because no classifier is defined")
        return

    for classifier in classifier_list:
        attack = SquareAttack(estimator=classifier,
                              norm=np.inf,
                              max_iter=5,
                              eps=0.3,
                              p_init=0.8,
                              nb_restarts=1)

        (x_train_mnist, y_train_mnist, x_test_mnist,
         y_test_mnist) = fix_get_mnist_subset

        x_train_mnist_adv = attack.generate(x=x_train_mnist, y=y_train_mnist)

        assert np.mean(np.abs(x_train_mnist_adv -
                              x_train_mnist)) == pytest.approx(0.053533513,
                                                               abs=0.015)
        assert np.max(np.abs(x_train_mnist_adv -
                             x_train_mnist)) == pytest.approx(0.3, abs=0.05)
def test_generate(art_warning, fix_get_mnist_subset,
                  image_dl_estimator_for_attack, norm):
    try:
        classifier = image_dl_estimator_for_attack(SquareAttack)

        attack = SquareAttack(estimator=classifier,
                              norm=norm,
                              max_iter=5,
                              eps=0.3,
                              p_init=0.8,
                              nb_restarts=1,
                              verbose=False)

        (x_train_mnist, y_train_mnist, x_test_mnist,
         y_test_mnist) = fix_get_mnist_subset

        x_train_mnist_adv = attack.generate(x=x_train_mnist, y=y_train_mnist)

        if norm == "inf":
            expected_mean = 0.053533513
            expected_max = 0.3
        elif norm == 2:
            expected_mean = 0.00073682
            expected_max = 0.25

        assert np.mean(np.abs(x_train_mnist_adv -
                              x_train_mnist)) == pytest.approx(expected_mean,
                                                               abs=0.025)
        assert np.max(np.abs(x_train_mnist_adv -
                             x_train_mnist)) == pytest.approx(expected_max,
                                                              abs=0.05)
    except ARTTestException as e:
        art_warning(e)
Exemple #3
0
def attackmodel(args, classifier, x_test, y_test, queries):
    acc = []
    for num_query in queries:
        if args['method'] == 'square':
            attack = SquareAttack(estimator=classifier,
                                  eps=args['epsilon'],
                                  max_iter=num_query,
                                  norm=2)
        elif args['method'] == 'zoo':
            attack = ZooAttack(classifier=classifier,
                               max_iter=num_query,
                               use_resize=False,
                               use_importance=False)
        elif args['method'] == 'boundary':
            attack = BoundaryAttack(estimator=classifier,
                                    targeted=False,
                                    max_iter=num_query)
        else:
            print("wrong method")
        x_test_adv = attack.generate(x=x_test)
        predictions = classifier.predict(x_test_adv)
        accuracy = np.sum(
            np.argmax(predictions, axis=1) == np.argmax(y_test, axis=1)) / len(
                y_test)
        print("Query:{}, and Accuracy: {:.4f}".format(num_query, accuracy))
        acc.append(accuracy)
    return acc
def test_generate(art_warning, fix_get_mnist_subset,
                  image_dl_estimator_for_attack):
    try:
        classifier = image_dl_estimator_for_attack(SquareAttack)

        attack = SquareAttack(estimator=classifier,
                              norm=np.inf,
                              max_iter=5,
                              eps=0.3,
                              p_init=0.8,
                              nb_restarts=1)

        (x_train_mnist, y_train_mnist, x_test_mnist,
         y_test_mnist) = fix_get_mnist_subset

        x_train_mnist_adv = attack.generate(x=x_train_mnist, y=y_train_mnist)

        assert np.mean(np.abs(x_train_mnist_adv -
                              x_train_mnist)) == pytest.approx(0.053533513,
                                                               abs=0.025)
        assert np.max(np.abs(x_train_mnist_adv -
                             x_train_mnist)) == pytest.approx(0.3, abs=0.05)
    except ARTTestException as e:
        art_warning(e)