Exemple #1
0
    def _digest_from_protobuf(self, protobuf):

        # Ensure that the input protobuf is indeed a protobuf object
        if not isinstance(protobuf, TDigest_instance):
            raise TypeError("Error: tried to decode a "
                            "non protobuf object into a TDigest")

        digest_dict = {}

        digest_dict["K"] = protobuf.K
        digest_dict["delta"] = protobuf.delta

        centroid_list = []

        for centroid in protobuf.centroids:
            current_centroid = {}
            current_centroid["c"] = centroid.c
            current_centroid["m"] = centroid.m
            centroid_list.append(current_centroid)

        digest_dict["centroids"] = centroid_list

        digest = TDigest()
        digest.update_from_dict(digest_dict)
        return digest
    def test_ints(self):
        t = TDigest()
        t.batch_update([1, 2, 3])
        assert abs(t.percentile(50) - 2) < 0.0001

        t = TDigest()
        x = [1, 2, 2, 2, 2, 2, 2, 2, 3]
        t.batch_update(x)
        assert t.percentile(50) == 2
        assert sum([c.count for c in t.C.values()]) == len(x)
    def test_uniform(self):
        t = TDigest()
        x = random.random(size=10000)
        t.batch_update(x)

        assert abs(t.percentile(50) - 0.5) < 0.01
        assert abs(t.percentile(10) - 0.1) < 0.01
        assert abs(t.percentile(90) - 0.9) < 0.01
        assert abs(t.percentile(1) - 0.01) < 0.005
        assert abs(t.percentile(99) - 0.99) < 0.005
        assert abs(t.percentile(0.1) - 0.001) < 0.001
        assert abs(t.percentile(99.9) - 0.999) < 0.001
    def test_trimmed_mean(self, percentile_range, data_size):
        p1 = percentile_range[0]
        p2 = percentile_range[1]

        t = TDigest()
        x = random.random(size=data_size)
        t.batch_update(x)

        tm_actual = t.trimmed_mean(p1, p2)
        tm_expected = x[
            bitwise_and(x >= percentile(x, p1), x <= percentile(x, p2))
        ].mean()

        testing.assert_allclose(tm_actual, tm_expected, rtol=0.01, atol=0.01)
 def test_extreme_percentiles_return_min_and_max(self, empty_tdigest):
     t = TDigest()
     data = random.randn(10000)
     t.batch_update(data)
     assert t.percentile(100.0) == data.max()
     assert t.percentile(0) == data.min()
     assert t.percentile(0.1) > data.min()
     assert t.percentile(0.999) < data.max()
    def test_trimmed_mean_corner_cases(self):
        td = TDigest()

        mean = td.trimmed_mean(0, 100)
        assert mean == 0

        td.update(1)
        mean = td.trimmed_mean(0, 100)
        assert mean == 1

        td.update(1000)
        mean = td.trimmed_mean(0, 100)
        assert mean == 500.5
    def test_data_comes_in_sorted_does_not_blow_up(self, empty_tdigest):
        t = TDigest()
        for x in range(10000):
            t.update(x, 1)

        assert len(t) < 5000

        t = TDigest()
        t.batch_update(range(10000))
        assert len(t) < 1000
Exemple #8
0
    def rebook(self, excludes=[]):
        """
        Force reset of all tdigests
        """

        self._rebooked = True
        for n, x in self:
            if n in excludes:
                continue
            self._set(n, TDigest())
        pass
    def test_trimmed_mean_negative(self):
        td = TDigest()
        for i in range(100):
            td.update(random.random())

        for i in range(10):
            td.update(i * 100)

        mean = td.trimmed_mean(1, 99)
        assert mean >= 0
Exemple #10
0
 def book(self, algname, name):
     name_ = "."
     name_ = name_.join([algname, name])
     self.__logger.info("Booking %s", name_)
     # TODO
     # Explore more options for correctly initializing h1
     value = self._get(name)
     if value is not None:
         self.__logger.error("TDigest already exists %s", name_)
     else:
         try:
             h = TDigest()
         except Exception:
             self.__logger.error("TDigest fails to book")
             raise
         self[name_] = h
def empty_tdigest():
    return TDigest()
 def test_percentile_at_border_returns_an_intermediate_value(self, empty_tdigest):
     data = [62.0, 202.0, 1415.0, 1433.0]
     t = TDigest()
     t.batch_update(data)
     assert t.percentile(25) == 132.0
 def test_negative_extreme_percentile_is_still_positive(self, empty_tdigest):
     # Test https://github.com/CamDavidsonPilon/tdigest/issues/16
     t = TDigest()
     t.batch_update([62.0, 202.0, 1415.0, 1433.0])
     print(t.percentile(26))
     assert t.percentile(26) > 0