Exemple #1
0
 def _set_coordinates(self, atoms=None):
     self.xyz = atoms.positions / Bohr
     if any(atoms.pbc):
         [a, b, c] = atoms.get_cell()
         V = abs(np.dot(np.cross(a, b), c))
         if V < 1e-2: warnings.warn("Cell volume < 0.01 A^3")
         self.UC = atoms.get_cell() / Bohr
         self.periodic = True
     else:
         self.UC, self.kgrid, self.periodic = None, None, False
Exemple #2
0
def get_localEnv(frame, centerIdx, cutoff, onlyDict=False):
    '''
    Get the local atomic environment around an atom in an atomic frame.

    :param frame: ase or quippy Atoms object
    :param centerIdx: int
    Index of the local environment center.
    :param cutoff: float
    Cutoff radius of the local environment.
    :return: ase Atoms object
    Local atomic environment. The center atom is in first position.
    '''
    import ase.atoms
    import quippy.atoms
    from ase.neighborlist import NeighborList
    from ase import Atoms as aseAtoms
    if isinstance(frame, quippy.atoms.Atoms):
        atoms = qp2ase(frame)
    elif isinstance(frame, ase.atoms.Atoms):
        atoms = frame
    else:
        raise ValueError

    n = len(atoms.get_atomic_numbers())
    nl = NeighborList([
        cutoff / 2.,
    ] * n,
                      skin=0.,
                      sorted=False,
                      self_interaction=False,
                      bothways=True)
    nl.build(atoms)

    cell = atoms.get_cell()
    pbc = atoms.get_pbc()
    pos = atoms.get_positions()
    positions = [
        pos[centerIdx],
    ]
    zList = atoms.get_atomic_numbers()
    numbers = [
        zList[centerIdx],
    ]

    indices, offsets = nl.get_neighbors(centerIdx)

    # print offsets,len(atom.get_atomic_numbers())
    for i, offset in zip(indices, offsets):
        positions.append(pos[i] + np.dot(offset, cell))
        numbers.append(zList[i])

    atomsParam = dict(numbers=numbers, cell=cell, positions=positions, pbc=pbc)

    if onlyDict:
        return atomsParam
    else:
        return aseAtoms(**atomsParam)
def dft_d_pbc(atoms, scaling_factor=0.75, interactionlist=None, interactionmatrix=None, cutoff_radius=DF_CUTOFF_RADIUS):
    """Main function making the D-G06 DFT-D correction available for
    systems with periodic boundary conditions. Applies the lattice
    summation defined in "lattice_sum" to the intra- and inter-cell
    evaluation of the D-G06 correction carried out in "d_g06_cell".

        >>> HCldim = Atoms('Cl2')
        >>> x1 = ( 1.65, 0, -0.01)
        >>> x2 = (-1.65, 0,  0.01)
        >>> HCldim.set_positions([x1,x2])
        >>> HCldim.set_atomic_numbers([ 17, 17])
        >>> HCldim.set_cell([(10.0, 0.0, 0.0), (0.0, 10.0, 0.0), (0.0, 0.0, 3.3)])
        >>> HCldim.set_pbc([False,]*3)
        >>> dft_d_pbc(HCldim)
        (-0.016281380498314325, array([[-0.01672876,  0.        ,  0.00010139],
               [ 0.01672876,  0.        , -0.00010139]]))
        >>> iso_c, iso_g = dft_d_iso(HCldim)
	>>> pbc_c, pbc_g = dft_d_pbc(HCldim)
	>>> iso_c == pbc_c, iso_g == pbc_g
	(True, array([[ True,  True,  True],
	       [ True,  True,  True]], dtype=bool))
    """
    #
    # Obtain data about system
    atom_numbers = atoms.get_atomic_numbers()
    positions = atoms.get_positions()
    periodic_directions = atoms.get_pbc()
    elem_cell = atoms.get_cell()
    #
    # Number of atoms within a single copy
    N_atoms = len(positions)
    #
    # Check input i.e. if interactionlist and interactionmatrix are set properly
    interactionlist, interactionmatrix = check_interaction_group_input(N_atoms, interactionlist, interactionmatrix)
    #
    # Start with Calculation
    # Get DFT-D parameters
    params = [d_g06_parameters(ind_1) for ind_1 in atom_numbers]
    #
    # Define function "func" as "d_g06" for the lattice summation done in "lattice_sum"
    def func(t):
        return d_g06_cell(N_atoms, params, positions, interactionlist, interactionmatrix, cutoff_radius, t_vec=t)

    #
    # Call lattice summation with function "d_g06_cell"
    dispersion_correction, gradient_contribution = lattice_sum(
        func, positions, elem_cell, periodic_directions, cutoff_radius
    )
    #
    # Scale dispersion correction and forces according to used XC-functional
    dispersion_correction = dispersion_correction * scaling_factor
    gradient_contribution = gradient_contribution * scaling_factor
    #
    return dispersion_correction, gradient_contribution
Exemple #4
0
    def init_ewaldMBD(self, atoms=None):
        """
        Initialize MBD calculation and evaluate properties.
        """
        mbd.init_grid(self.grid_size)
        mbd.my_task, mbd.n_tasks = 0, self.num_tasks

        assert hasattr(self, 'a_div_a0'), \
        "Please provide rescaling to obtain initial dispersion parameters from accurate free atom reference data via 'set_rescaling(rescaling)'!"

        self.pos = atoms.positions / Bohr
        self.UC = atoms.get_cell() / Bohr
        symbols = atoms.get_chemical_symbols()
        self.alpha_f, self.C6_f, self.RvdW_f = get_free_atom_data(symbols)
        self.alpha_TS = self.alpha_f * self.a_div_a0
        self.C6_TS = self.C6_f * self.a_div_a0**2
        self.RvdW_TS = self.RvdW_f * self.a_div_a0**(1. / 3.)
        self.omega_TS = mbd.omega_eff(self.C6_TS, self.alpha_TS)
        self.beta = xc2beta[self.xc]

        self.run_electrostatic_screening(mode='C')
        self.get_reciprocal_space_mbd_energy()
        mbd.destroy_grid()
Exemple #5
0
    def initialize_sdc(self, atoms=None):
        """ Initialization of all parameters in the sedc-module.

        Here we initialize all parameters in order to successfully calculate
        with sdc_recode module. The priority of parameters is user > default >
        dummy. The bare minimum of required parameters is:

        * atoms             [ ASE atoms-object of the system treated        ]
        * sedc_n_groups     [ integer, number of differently treated groups ]
        * sedc_groups       [ array of integers, number of atoms per group  ]
        * sedc_pbc_switches [ np.array of 6-dim vectors specifying the VdW
                              contributions in A,B,C in positive and
                              negative direction                            ]

        This has to be done after the creation of our calculator-object,
        because otherwise we do not have the atoms-module to calculate most of
        the required properties.

        """
        for arg in self.valid_args:
            if hasattr(self, arg):
                # In order to avoid lengthy np-initialization in aims-script
                if (arg == 'sedc_pbc_g_switches'):
                    setattr(sdc.sdc_recode, arg,
                            eval('np.transpose(self.' + arg + ')'))
                elif (arg == 'sedc_tssurf_vfree_div_vbulk'):
                    tmp_array = \
                        np.array(([1] * atoms.get_number_of_atoms()),
                                np.float64)
                    species = []
                    n_species = 0
                    for atom in atoms:
                        species_i = atom.number
                        if species_i not in species:
                            species.append(species_i)
                            n_species += 1
                    species.sort()
                    for i,a in enumerate(atoms):
                        for ss, s in enumerate(species):
                            if s==a.number:
                                tmp_array[i] = \
                                    self.sedc_tssurf_vfree_div_vbulk[ss]
                    sdc.sdc_recode.sedc_tssurf_vfree_div_vbulk = \
                            tmp_array
                else:
                    setattr(sdc.sdc_recode, arg, eval('self.' + arg))
            elif arg in self.default_parameters:
                setattr(sdc.sdc_recode, arg, self.default_parameters[arg])
            else:
                if (arg == 'internal_cart_coord'):
                    sdc.sdc_recode.internal_cart_coord = \
                        atoms.get_positions().transpose().copy()
                elif (arg == 'sedc_cart_coord'):
                    sdc.sdc_recode.sedc_cart_coord = \
                        atoms.get_positions().transpose().copy()
                elif (arg == 'sedc_cell_vectors'):
                    sdc.sdc_recode.sedc_cell_vectors = \
                        atoms.get_cell().transpose().copy()
                elif (arg == 'sedc_species'):
                    sdc.sdc_recode.sedc_species = \
                        atoms.get_atomic_numbers().copy()
                elif (arg == 'sedc_n_ions'):
                    sdc.sdc_recode.sedc_n_ions = \
                        atoms.get_number_of_atoms()
                elif (arg == 'sedc_pbc_g_fold'):
                    sdc.sdc_recode.sedc_pbc_g_fold = [0] * self.sedc_n_groups
                elif (arg == 'sedc_ts_veff_div_vfree'):
                    if not self.hirshvolrat_is_set:
                        sdc.sdc_recode.sedc_ts_veff_div_vfree = \
                            np.array(([1] * atoms.get_number_of_atoms()),
                                     np.float64)
                elif (arg == 'sedc_tssurf_vfree_div_vbulk'):
                    sdc.sdc_recode.sedc_tssurf_vfree_div_vbulk = \
                        np.array(([1] * atoms.get_number_of_atoms()),
                                np.float64)
                elif (arg == 'sedc_skip_atom'):
                    sdc.sdc_recode.sedc_skip_atom = \
                        np.array(([-1] * atoms.get_number_of_atoms()),
                                 np.float64)
                elif (arg == 'sedc_pbc_g_only_intra'):
                    sdc.sdc_recode.sedc_pbc_g_only_intra = \
                        [0] * self.sedc_n_groups
                elif (arg == 'sedc_pbc_g_cells'):
                    sdc.sdc_recode.sedc_pbc_g_cells = \
                        np.tile(atoms.get_cell().transpose().copy(),
                                (1, self.sedc_n_groups))
                elif (arg == 'sedc_pbc_g_skip'):
                    sdc.sdc_recode.sedc_pbc_g_skip = [0] * self.sedc_n_groups
                else:
                    print("You've been sloppy my friend. :) Variable:", arg, \
                          " does not exist!")
Exemple #6
0
    def init_MBD(self, atoms=None, do_MBD=True):
        """
        Initialize MBD calculation and evaluate properties.
        """
        from numpy.linalg import eigvals

        mbd_mod.init_grid(self.n_omega_SCS)
        mbd_mod.param_ts_energy_accuracy = self.TS_accuracy
        mbd_mod.param_ts_cutoff_radius = self.TS_cutoff
        mbd_mod.param_ewald_real_cutoff_scaling = self.ewald_real_cutoff_scaling
        mbd_mod.param_ewald_rec_cutoff_scaling = self.ewald_rec_cutoff_scaling
        mbd_mod.param_k_grid_shift = self.k_grid_shift
        mbd_mod.param_mbd_nbody_max = self.max_nbody_MBD
        mbd_mod.param_vacuum_axis = self.vacuum_axis
        mbd_mod.param_zero_negative_eigs = self.set_negative_eigenvalues_zero
        mbd_mod.my_task, mbd_mod.n_tasks = self.myid, self.ntasks
        solver_bak = self.eigensolver
        self.eigensolver = self.eigensolver.strip()[:5].ljust(5)
        if self.eigensolver not in ['qr   ', 'mrrr ', 'dandc']:
            self.eigensolver = 'qr   '
            if (self.myid == 0):
                print("The specified eigensolver '" + solver_bak.strip() +
                      "' is not known (yet).")
                print("Using default solver 'qr' instead...")

        mbd_mod.eigensolver = self.eigensolver

        assert hasattr(self, 'a_div_a0'), \
        "Please provide rescaling to obtain initial dispersion parameters from accurate free atom reference data via 'set_rescaling(rescaling)'!"

        if self.use_alpha_vs_V_for_QDO: self.a_div_a0 **= (4. / 3.)
        self.modus = ''
        if (self.ntasks > 1): self.modus += 'P'
        if np.any(self.vacuum_axis == atoms.pbc):
            if (self.myid == 0):
                msg = '\n WARNING: Your specification for vacuum_axis is not in line with '
                msg += 'the boundary conditions of the atoms object!\n'
                print(msg)

        if (not np.all(self.vacuum_axis)):
            self.modus += 'C'
            if not (self.do_reciprocal or self.do_supercell):
                raise ValueError(
                    "You chose periodic boundary condition via vacuum_axis, but did not specify how to handle it (do_reciprocal or do_supercell)!"
                )

        self.n_atoms = len(atoms)
        self.pos = atoms.positions / Bohr
        if np.product(eigvals(atoms.get_cell())) < 1e-2:
            if not np.all(self.vacuum_axis):
                raise ValueError(
                    "Volume < 0.01 \AA^3. Please, define reasonable unit cell for periodic calculations."
                )
            else:
                atoms.set_cell([[1e6, 0., 0.], [0., 1e6, 0.], [0., 0., 1e6]])

        self.UC = atoms.get_cell() / Bohr
        symbols = atoms.get_chemical_symbols()
        self._get_dispersion_params(atoms)
        if hasattr(self, 'custom_damping_SCSMBD'):
            self.damp_par_a = self.custom_damping_SCSMBD['a']
            self.damp_par_beta = self.custom_damping_SCSMBD['beta']
        else:
            self._get_SCS_and_MBD_damping_params()

        if self.do_SCS:
            if self.get_alpha_full: self.modus += 'A'
            self._run_electrostatic_screening()

        if self.do_reciprocal: self.modus = self.modus.replace('C', 'CR')
        if self.get_MBD_eigenvalues: self.modus += 'E'
        if self.get_MBD_eigenvectors: self.modus += 'V'

        if do_MBD: self._get_mbd_energy()
        if self.do_TS: self._get_TS_energy1()
        if self.do_TSSCS:
            if not self.do_SCS:
                print(
                    'You requested TS energy with screened (SCS) polarizabilities,'
                )
                print("but didn't set do_SCS to True. Skipping...")
            else:
                self._get_TSSCS_energy1()

        mbd_mod.destroy_grid()