Exemple #1
0
def test_monoclinic():
    """Test band structure from different variations of hexagonal cells."""
    mc1 = Cell([[1, 0, 0], [0, 1, 0], [0, 0.2, 1]])
    par = mc1.cellpar()
    mc2 = Cell.new(par)
    mc3 = Cell([[1, 0, 0], [0, 1, 0], [-0.2, 0, 1]])
    mc4 = Cell([[1, 0, 0], [-0.2, 1, 0], [0, 0, 1]])
    path = 'GYHCEM1AXH1'

    firsttime = True
    for cell in [mc1, mc2, mc3, mc4]:
        a = Atoms(cell=cell, pbc=True)
        a.cell *= 3
        a.calc = FreeElectrons(nvalence=1, kpts={'path': path})

        lat = a.cell.get_bravais_lattice()
        assert lat.name == 'MCL'
        a.get_potential_energy()
        bs = a.calc.band_structure()
        coords, labelcoords, labels = bs.get_labels()
        assert ''.join(labels) == path
        e_skn = bs.energies

        if firsttime:
            coords1 = coords
            labelcoords1 = labelcoords
            e_skn1 = e_skn
            firsttime = False
        else:
            for d in [coords - coords1,
                      labelcoords - labelcoords1,
                      e_skn - e_skn1]:
                print(abs(d).max())
                assert abs(d).max() < 1e-13, d
Exemple #2
0
def test_hex():
    """Test band structure from different variations of hexagonal cells."""
    firsttime = True
    for cell in [[[1, 0, 0], [0.5, 3**0.5 / 2, 0], [0, 0, 1]],
                 [[1, 0, 0], [-0.5, 3**0.5 / 2, 0], [0, 0, 1]],
                 [[0.5, -3**0.5 / 2, 0], [0.5, 3**0.5 / 2, 0], [0, 0, 1]]]:
        a = Atoms(cell=cell, pbc=True)
        a.cell *= 3
        a.calc = FreeElectrons(nvalence=1, kpts={'path': 'GMKG'})
        lat = a.cell.get_bravais_lattice()
        assert lat.name == 'HEX'
        print(repr(a.cell.get_bravais_lattice()))
        r = a.cell.reciprocal()
        k = get_special_points(a.cell)['K']
        print(np.dot(k, r))
        a.get_potential_energy()
        bs = a.calc.band_structure()
        coords, labelcoords, labels = bs.get_labels()
        assert ''.join(labels) == 'GMKG'
        e_skn = bs.energies
        if firsttime:
            coords1 = coords
            labelcoords1 = labelcoords
            e_skn1 = e_skn
            firsttime = False
        else:
            for d in [
                    coords - coords1, labelcoords - labelcoords1,
                    e_skn - e_skn1
            ]:
                assert abs(d).max() < 1e-13
Exemple #3
0
def test_lattice_bandstructure(testdir, i, lat, figure):
    xid = '{:02d}.{}'.format(i, lat.variant)
    path = lat.bandpath(density=10)
    path.write('path.{}.json'.format(xid))
    atoms = Atoms(cell=lat.tocell(), pbc=True)
    atoms.calc = FreeElectrons(nvalence=0, kpts=path.kpts)
    bs = calculate_band_structure(atoms, path)
    bs.write('bs.{}.json'.format(xid))

    ax = figure.gca()
    bs.plot(ax=ax, emin=0, emax=20, filename='fig.{}.png'.format(xid))
Exemple #4
0
    def free_electron_band_structure(self, **kwargs):
        """Return band structure of free electrons for this bandpath.

        This is for mostly testing."""
        from ase import Atoms
        from ase.calculators.test import FreeElectrons
        from ase.dft.band_structure import calculate_band_structure
        atoms = Atoms(cell=self.cell, pbc=True)
        atoms.calc = FreeElectrons(**kwargs)
        bs = calculate_band_structure(atoms, path=self)
        return bs
def test_bandstructure(testdir, plt):
    atoms = bulk('Cu')
    path = special_paths['fcc']
    atoms.calc = FreeElectrons(nvalence=1, kpts={'path': path, 'npoints': 200})
    atoms.get_potential_energy()
    bs = atoms.calc.band_structure()
    coords, labelcoords, labels = bs.get_labels()
    print(labels)
    bs.write('hmm.json')
    bs = BandStructure.read('hmm.json')
    coords, labelcoords, labels = bs.get_labels()
    print(labels)
    assert ''.join(labels) == 'GXWKGLUWLKUX'
    bs.plot(emax=10, filename='bs.png')
Exemple #6
0
    def free_electron_band_structure(
            self, **kwargs) -> 'ase.spectrum.band_structure.BandStructure':
        """Return band structure of free electrons for this bandpath.

        Keyword arguments are passed to
        :class:`~ase.calculators.test.FreeElectrons`.

        This is for mostly testing and visualization."""
        from ase import Atoms
        from ase.calculators.test import FreeElectrons
        from ase.spectrum.band_structure import calculate_band_structure
        atoms = Atoms(cell=self.cell, pbc=True)
        atoms.calc = FreeElectrons(**kwargs)
        bs = calculate_band_structure(atoms, path=self)
        return bs
Exemple #7
0
def test():
    ax = plt.gca()

    for i, lat in enumerate(all_variants()):
        if lat.ndim == 2:
            break
        xid = '{:02d}.{}'.format(i, lat.variant)
        path = lat.bandpath(density=10)
        path.write('path.{}.json'.format(xid))
        atoms = Atoms(cell=lat.tocell(), pbc=True)
        atoms.calc = FreeElectrons(nvalence=0, kpts=path.kpts)
        bs = calculate_band_structure(atoms, path)
        bs.write('bs.{}.json'.format(xid))
        bs.plot(ax=ax, emin=0, emax=20, filename='fig.{}.png'.format(xid))
        ax.clear()
Exemple #8
0
def test_bandstructure_json(testdir):
    atoms = bulk('Au')
    lat = atoms.cell.get_bravais_lattice()
    path = lat.bandpath(npoints=100)

    atoms.calc = FreeElectrons()

    bs = calculate_band_structure(atoms, path)
    bs.write('bs.json')
    bs.path.write('path.json')

    bs1 = read_json('bs.json')
    bs2 = BandStructure.read('bs.json')
    path1 = read_json('path.json')
    assert type(bs1) == type(bs)  # noqa
    assert type(bs2) == type(bs)  # noqa
    assert type(path1) == type(bs.path)  # noqa
Exemple #9
0
def test_monoclinic():
    """Test band structure from different variations of hexagonal cells."""
    import numpy as np
    from ase import Atoms
    from ase.calculators.test import FreeElectrons
    from ase.geometry import (crystal_structure_from_cell, cell_to_cellpar,
                              cellpar_to_cell)
    from ase.dft.kpoints import get_special_points

    mc1 = [[1, 0, 0], [0, 1, 0], [0, 0.2, 1]]
    par = cell_to_cellpar(mc1)
    mc2 = cellpar_to_cell(par)
    mc3 = [[1, 0, 0], [0, 1, 0], [-0.2, 0, 1]]
    mc4 = [[1, 0, 0], [-0.2, 1, 0], [0, 0, 1]]
    path = 'GYHCEM1AXH1'

    firsttime = True
    for cell in [mc1, mc2, mc3, mc4]:
        a = Atoms(cell=cell, pbc=True)
        a.cell *= 3
        a.calc = FreeElectrons(nvalence=1, kpts={'path': path})
        cs = crystal_structure_from_cell(a.cell)
        assert cs == 'monoclinic'
        r = a.cell.reciprocal()
        k = get_special_points(a.cell)['H']
        print(np.dot(k, r))
        a.get_potential_energy()
        bs = a.calc.band_structure()
        coords, labelcoords, labels = bs.get_labels()
        assert ''.join(labels) == path
        e_skn = bs.energies
        # bs.plot()
        if firsttime:
            coords1 = coords
            labelcoords1 = labelcoords
            e_skn1 = e_skn
            firsttime = False
        else:
            for d in [
                    coords - coords1, labelcoords - labelcoords1,
                    e_skn - e_skn1
            ]:
                print(abs(d).max())
                assert abs(d).max() < 1e-13, d
def test_bandstructure(plt):
    from ase.build import bulk
    from ase.calculators.test import FreeElectrons
    from ase.dft.kpoints import special_paths
    from ase.dft.band_structure import BandStructure

    a = bulk('Cu')
    path = special_paths['fcc']
    a.calc = FreeElectrons(nvalence=1,
                           kpts={'path': path, 'npoints': 200})
    a.get_potential_energy()
    bs = a.calc.band_structure()
    coords, labelcoords, labels = bs.get_labels()
    print(labels)
    bs.write('hmm.json')
    bs = BandStructure.read('hmm.json')
    coords, labelcoords, labels = bs.get_labels()
    print(labels)
    assert ''.join(labels) == 'GXWKGLUWLKUX'
    bs.plot(emax=10, filename='bs.png')
def test_bandstructure_json():
    from ase.build import bulk
    from ase.spectrum.band_structure import calculate_band_structure, BandStructure
    from ase.io.jsonio import read_json
    from ase.calculators.test import FreeElectrons

    atoms = bulk('Au')
    lat = atoms.cell.get_bravais_lattice()
    path = lat.bandpath(npoints=100)

    atoms.calc = FreeElectrons()

    bs = calculate_band_structure(atoms, path)
    bs.write('bs.json')
    bs.path.write('path.json')

    bs1 = read_json('bs.json')
    bs2 = BandStructure.read('bs.json')
    path1 = read_json('path.json')
    assert type(bs1) == type(bs)  # noqa
    assert type(bs2) == type(bs)  # noqa
    assert type(path1) == type(bs.path)  # noqa
Exemple #12
0
import matplotlib
from ase.build import bulk
from ase.calculators.test import FreeElectrons
from ase.dft.kpoints import special_paths
from ase.dft.band_structure import BandStructure

a = bulk('Cu')
path = special_paths['fcc']
a.calc = FreeElectrons(nvalence=1, kpts={'path': path, 'npoints': 200})
a.get_potential_energy()
bs = a.calc.band_structure()
coords, labelcoords, labels = bs.get_labels()
print(labels)
bs.write('hmm.json')
bs = BandStructure.read('hmm.json')
coords, labelcoords, labels = bs.get_labels()
print(labels)
assert ''.join(labels) == 'GXWKGLUWLKUX'
matplotlib.use('Agg', warn=False)
bs.plot(emax=10, filename='bs.png')
Exemple #13
0
def _atoms(cell):
    atoms = Atoms(cell=cell, pbc=True)
    atoms.calc = FreeElectrons()
    return atoms
Exemple #14
0
"""Test band structure from different variations of hexagonal cells."""
import numpy as np
from ase import Atoms
from ase.calculators.test import FreeElectrons
from ase.dft.kpoints import get_special_points

firsttime = True
for cell in [[[1, 0, 0], [0.5, 3**0.5 / 2, 0], [0, 0, 1]],
             [[1, 0, 0], [-0.5, 3**0.5 / 2, 0], [0, 0, 1]],
             [[0.5, -3**0.5 / 2, 0], [0.5, 3**0.5 / 2, 0], [0, 0, 1]]]:
    a = Atoms(cell=cell, pbc=True)
    a.cell *= 3
    a.calc = FreeElectrons(nvalence=1, kpts={'path': 'GMKG'})
    lat = a.cell.get_bravais_lattice()
    assert lat.name == 'HEX'
    print(repr(a.cell.get_bravais_lattice()))
    #print(crystal_structure_from_cell(a.cell))
    r = a.get_reciprocal_cell()
    k = get_special_points(a.cell)['K']
    print(np.dot(k, r))
    a.get_potential_energy()
    bs = a.calc.band_structure()
    coords, labelcoords, labels = bs.get_labels()
    assert ''.join(labels) == 'GMKG'
    e_skn = bs.energies
    if firsttime:
        coords1 = coords
        labelcoords1 = labelcoords
        e_skn1 = e_skn
        firsttime = False
    else:
Exemple #15
0
from ase import Atoms
from ase.calculators.test import FreeElectrons
from ase.geometry import crystal_structure_from_cell, cell_to_cellpar, cellpar_to_cell
from ase.dft.kpoints import get_special_points

mc1 = [[1, 0, 0], [0, 1, 0], [0, 0.2, 1]]
par = cell_to_cellpar(mc1)
mc2 = cellpar_to_cell(par)
mc3 = [[1, 0, 0], [0, 1, 0], [-0.2, 0, 1]]
path = 'GYHCEM1AXH1'

firsttime = True
for cell in [mc1, mc2, mc3]:
    a = Atoms(cell=cell, pbc=True)
    a.cell *= 3
    a.calc = FreeElectrons(nvalence=1, kpts={'path': path})
    print(crystal_structure_from_cell(a.cell))
    r = a.get_reciprocal_cell()
    k = get_special_points(a.cell)['H']
    print(np.dot(k, r))
    a.get_potential_energy()
    bs = a.calc.band_structure()
    coords, labelcoords, labels = bs.get_labels()
    assert ''.join(labels) == path
    e_skn = bs.energies
    # bs.plot()
    if firsttime:
        coords1 = coords
        labelcoords1 = labelcoords
        e_skn1 = e_skn
        firsttime = False
Exemple #16
0
from ase.build import bulk
from ase.dft.band_structure import calculate_band_structure
from ase.io.jsonio import read_json
from ase.calculators.test import FreeElectrons

atoms = bulk('Au')
lat, _ = atoms.cell.bravais()
path = lat.bandpath(npoints=100)

atoms.calc = FreeElectrons()

bs = calculate_band_structure(atoms, path)
bs.write('bs.json')
bs.path.write('path.json')

bs1 = read_json('bs.json')
path1 = read_json('path.json')
print(bs1)
print(path1)
assert type(bs1) == type(bs)
assert type(path1) == type(bs.path)