Exemple #1
0
 def get_dos(self, kpts=(10, 10, 10), npts=1000, delta=1e-3, indices=None):
     from ase.spectrum.dosdata import RawDOSData
     # dos = self.dos(kpts, npts, delta, indices)
     kpts_kc = monkhorst_pack(kpts)
     omega_w = self.band_structure(kpts_kc).ravel()
     dos = RawDOSData(omega_w, np.ones_like(omega_w))
     return dos
Exemple #2
0
 def get_dos(self, kpts=(10, 10, 10), npts=1000, delta=1e-3, indices=None):
     #dos = self.dos(kpts, npts, delta, indices)
     kpts_kc = monkhorst_pack(kpts)
     omega_w = self.band_structure(kpts_kc).ravel()
     from ase.dft.pdos import DOS
     dos = DOS(omega_w, np.ones_like(omega_w)[None])
     return dos
Exemple #3
0
    def dos(self, kpts=(10, 10, 10), npts=1000, delta=1e-3, indices=None):
        """Calculate phonon dos as a function of energy.

        Parameters
        ----------
        qpts: tuple
            Shape of Monkhorst-Pack grid for sampling the Brillouin zone.
        npts: int
            Number of energy points.
        delta: float
            Broadening of Lorentzian line-shape in eV.
        indices: list
            If indices is not None, the atomic-partial dos for the specified
            atoms will be calculated.
            
        """

        # Monkhorst-Pack grid
        kpts_kc = monkhorst_pack(kpts)
        N = np.prod(kpts)
        # Get frequencies
        omega_kl = self.band_structure(kpts_kc)
        # Energy axis and dos
        omega_e = np.linspace(0., np.amax(omega_kl) + 5e-3, num=npts)
        dos_e = np.zeros_like(omega_e)
       
        # Sum up contribution from all q-points and branches
        for omega_l in omega_kl:
            diff_el = (omega_e[:, np.newaxis] - omega_l[np.newaxis, :])**2
            dos_el = 1. / (diff_el + (0.5 * delta)**2)
            dos_e += dos_el.sum(axis=1)

        dos_e *= 1. / (N * pi) * 0.5 * delta
        
        return omega_e, dos_e
Exemple #4
0
def kpts2ndarray(kpts):
    """Convert kpts keyword to 2d ndarray of scaled k-points."""
    if kpts is None:
        return np.zeros((1, 3))
    if isinstance(kpts[0], int):
        return monkhorst_pack(kpts)
    return np.array(kpts)
Exemple #5
0
    def dos(self, kpts=(10, 10, 10), npts=1000, delta=1e-3, indices=None):
        """Calculate phonon dos as a function of energy.

        Parameters:

        qpts: tuple
            Shape of Monkhorst-Pack grid for sampling the Brillouin zone.
        npts: int
            Number of energy points.
        delta: float
            Broadening of Lorentzian line-shape in eV.
        indices: list
            If indices is not None, the atomic-partial dos for the specified
            atoms will be calculated.

        """

        # Monkhorst-Pack grid
        kpts_kc = monkhorst_pack(kpts)
        N = np.prod(kpts)
        # Get frequencies
        omega_kl = self.band_structure(kpts_kc)
        # Energy axis and dos
        omega_e = np.linspace(0., np.amax(omega_kl) + 5e-3, num=npts)
        dos_e = np.zeros_like(omega_e)

        # Sum up contribution from all q-points and branches
        for omega_l in omega_kl:
            diff_el = (omega_e[:, np.newaxis] - omega_l[np.newaxis, :])**2
            dos_el = 1. / (diff_el + (0.5 * delta)**2)
            dos_e += dos_el.sum(axis=1)

        dos_e *= 1. / (N * pi) * 0.5 * delta

        return omega_e, dos_e
Exemple #6
0
    def calculate_q(self, chi0, pd, chi0_swGG, chi0_swxvG, chi0_swvv, m1, m2,
                    cut_G, A2_x):
        chi0_wGG = chi0_swGG[0]
        if chi0_swxvG is not None:
            chi0_wxvG = chi0_swxvG[0]
            chi0_wvv = chi0_swvv[0]
        else:
            chi0_wxvG = None
            chi0_wvv = None
        chi0._calculate(pd,
                        chi0_wGG,
                        chi0_wxvG,
                        chi0_wvv,
                        m1,
                        m2,
                        spins='all',
                        extend_head=False)

        print('E_c(q) = ', end='', file=self.fd)

        chi0_wGG = chi0.redistribute(chi0_wGG, A2_x)

        if not pd.kd.gamma:
            e = self.calculate_energy(pd, chi0_wGG, cut_G)
            print('%.3f eV' % (e * Hartree), file=self.fd)
            self.fd.flush()
        else:
            from ase.dft import monkhorst_pack
            kd = self.calc.wfs.kd
            N = 4
            N_c = np.array([N, N, N])
            if self.truncation is not None:
                N_c[kd.N_c == 1] = 1
            q_qc = monkhorst_pack(N_c) / kd.N_c
            q_qc *= 1.0e-6
            U_scc = kd.symmetry.op_scc
            q_qc = kd.get_ibz_q_points(q_qc, U_scc)[0]
            weight_q = kd.q_weights
            q_qv = 2 * np.pi * np.dot(q_qc, pd.gd.icell_cv)

            nw = len(self.omega_w)
            mynw = nw // self.nblocks
            w1 = self.blockcomm.rank * mynw
            w2 = w1 + mynw
            a_qw = np.sum(np.dot(chi0_wvv[w1:w2], q_qv.T) * q_qv.T, axis=1).T
            a0_qwG = np.dot(q_qv, chi0_wxvG[w1:w2, 0])
            a1_qwG = np.dot(q_qv, chi0_wxvG[w1:w2, 1])

            e = 0
            for iq in range(len(q_qv)):
                chi0_wGG[:, 0] = a0_qwG[iq]
                chi0_wGG[:, :, 0] = a1_qwG[iq]
                chi0_wGG[:, 0, 0] = a_qw[iq]
                ev = self.calculate_energy(pd, chi0_wGG, cut_G, q_v=q_qv[iq])
                e += ev * weight_q[iq]
            print('%.3f eV' % (e * Hartree), file=self.fd)
            self.fd.flush()

        return e
Exemple #7
0
def get_integrated_kernel(pd, N_c, truncation=None, N=100, reduced=False):
    from scipy.special import j1, k0, j0, k1

    B_cv = 2 * np.pi * pd.gd.icell_cv
    Nf_c = np.array([N, N, N])
    if reduced:
        # Only integrate periodic directions if truncation is used
        Nf_c[np.where(N_c == 1)[0]] = 1
    q_qc = monkhorst_pack(Nf_c) / N_c
    q_qc += pd.kd.ibzk_kc[0]
    q_qv = np.dot(q_qc, B_cv)

    if truncation is None:
        V_q = 4 * np.pi / np.sum(q_qv**2, axis=1)
    elif truncation == '2D':
        # The non-periodic direction is determined from k-point grid
        Nn_c = np.where(N_c == 1)[0]
        Np_c = np.where(N_c != 1)[0]
        if len(Nn_c) != 1:
            # The k-point grid does not fit with boundary conditions
            Nn_c = [2]  # Choose reduced cell vectors 0, 1
            Np_c = [0, 1]  # Choose reduced cell vector 2
        # Truncation length is half of cell vector in non-periodic direction
        R = pd.gd.cell_cv[Nn_c[0], Nn_c[0]] / 2.

        qp_q = ((q_qv[:, Np_c[0]])**2 + (q_qv[:, Np_c[1]]**2))**0.5
        qn_q = q_qv[:, Nn_c[0]]

        V_q = 4 * np.pi / (q_qv**2).sum(axis=1)
        a_q = qn_q / qp_q * np.sin(qn_q * R) - np.cos(qn_q * R)
        V_q *= 1. + np.exp(-qp_q * R) * a_q
    elif truncation == '1D':
        # The non-periodic direction is determined from k-point grid
        Nn_c = np.where(N_c == 1)[0]
        Np_c = np.where(N_c != 1)[0]

        if len(Nn_c) != 2:
            # The k-point grid does not fit with boundary conditions
            Nn_c = [0, 1]  # Choose reduced cell vectors 0, 1
            Np_c = [2]  # Choose reduced cell vector 2
        # The radius is determined from area of non-periodic part of cell
        Acell_cv = pd.gd.cell_cv[Nn_c, :][:, Nn_c]
        R = (np.linalg.det(Acell_cv) / np.pi)**0.5

        qnR_q = (q_qv[:, Nn_c[0]]**2 + q_qv[:, Nn_c[1]]**2)**0.5 * R
        qpR_q = abs(q_qv[:, Np_c[0]]) * R
        V_q = 4 * np.pi / (q_qv**2).sum(axis=1)
        V_q *= (1.0 + qnR_q * j1(qnR_q) * k0(qpR_q) -
                qpR_q * j0(qnR_q) * k1(qpR_q))
    elif truncation == '0D' or 'wigner-seitz':
        R = (3 * np.linalg.det(pd.gd.cell_cv) / (4 * np.pi))**(1. / 3.)
        q2_q = (q_qv**2).sum(axis=1)
        V_q = 4 * np.pi / q2_q
        V_q *= 1.0 - np.cos(q2_q**0.5 * R)

    return np.sum(V_q) / len(V_q), np.sum(V_q**0.5) / len(V_q)
Exemple #8
0
    def __init__(self, kpts, nspins):
        """Construct descriptor object for kpoint/spin combinations (ks-pair).

        Parameters
        ----------
        kpts: None, list of ints, or ndarray
            Specification of the k-point grid. None=Gamma, list of
            ints=Monkhorst-Pack, ndarray=user specified.
        nspins: int
            Number of spins.

        Attributes
        ============  ======================================================
        ``N_c``       Number of k-points in the different directions.
        ``nspins``    Number of spins.
        ``nibzkpts``  Number of irreducible kpoints in 1st Brillouin zone.
        ``nks``       Number of k-point/spin combinations in total.
        ``mynks``     Number of k-point/spin combinations on this CPU.
        ``gamma``     Boolean indicator for gamma point calculation.
        ``comm``      MPI-communicator for kpoint distribution.
        ============  ======================================================
        
        """

        if kpts is None:
            self.bzk_kc = np.zeros((1, 3))
            self.N_c = np.array((1, 1, 1), dtype=int)
        elif isinstance(kpts[0], int):
            self.bzk_kc = monkhorst_pack(kpts)
            self.N_c = np.array(kpts, dtype=int)
        else:
            self.bzk_kc = np.array(kpts)
            self.N_c = None

        self.nspins = nspins
        self.nbzkpts = len(self.bzk_kc)
        
        # Gamma-point calculation
        self.gamma = self.nbzkpts == 1 and not self.bzk_kc[0].any()

        self.symmetry = None
        self.comm = None
        self.ibzk_kc = None
        self.weight_k = None
        self.nibzkpts = None

        self.rank0 = None
        self.mynks = None
        self.ks0 = None
        self.ibzk_qc = None
Exemple #9
0
    def get_phonons(self, kpts=(50, 50, 50), npts=5000):
        """Calculate the phonon spectrum and DOS.

        Parameters
        ----------
        kpts : tuple
            Number of points in each directions of the k-space grid.
        npts : int
            Number of energy points to calculate the DOS at.

        """
        self.phonons = Phonons(self.atoms,
                               self.calc(),
                               supercell=self.supercell_size,
                               delta=0.05,
                               name=self.name)
        self.phonons.run()
        # Read forces and assemble the dynamical matrix
        self.phonons.read(acoustic=True)
        self.phonon_kpts_mp = monkhorst_pack(kpts)
        self.phonon_energy_mp = self.phonons.band_structure(
            self.phonon_kpts_mp)
        self.phonon_energy, self.phonon_dos = \
            self.phonons.dos(kpts=kpts, npts=npts, delta=5e-4)
from __future__ import print_function
from ase import Atoms
from ase.build import bulk
from ase.dft import monkhorst_pack
from ase.parallel import paropen
from gpaw import GPAW, FermiDirac
from gpaw.wavefunctions.pw import PW
from gpaw.xc.exx import EXX
import numpy as np

# Monkhorst-Pack grid shifted to be gamma centered
k = 8
kpts = monkhorst_pack([k, k, k])
kpts += [1. / (2 * k), 1. / (2 * k), 1. / (2 * k)]

cell = bulk('C', 'fcc', a=3.553).get_cell()
a = Atoms('C2',
          cell=cell,
          pbc=True,
          scaled_positions=((0, 0, 0), (0.25, 0.25, 0.25)))

calc = GPAW(mode=PW(600),
            xc='PBE',
            occupations=FermiDirac(width=0.01),
            convergence={'density': 1.e-6},
            kpts=kpts,
            parallel={'domain': 1},
            txt='diamond.ralda_01_pbe.txt')

a.set_calculator(calc)
E_pbe = a.get_potential_energy()
Exemple #11
0
from ase.dft import monkhorst_pack

assert [0, 0, 0] in  monkhorst_pack((1, 3, 5)).tolist()
assert [0, 0, 0] not in  monkhorst_pack((1, 3, 6)).tolist()
assert len(monkhorst_pack((3, 4, 6))) == 3 * 4 * 6

from ase.units import *
print Hartree, Bohr, kJ/mol, kcal/mol, kB*300, fs, 1/fs
Exemple #12
0
    def calculate_screened_potential(self, ac):
        """Calculate W_GG(q)"""

        chi0 = Chi0(self.calc,
                    frequencies=[0.0],
                    eta=0.001,
                    ecut=self.ecut,
                    intraband=False,
                    hilbert=False,
                    nbands=self.nbands,
                    txt='chi0.txt',
                    world=world,
                    )

        self.blockcomm = chi0.blockcomm
        wfs = self.calc.wfs

        self.Q_qaGii = []
        self.W_qGG = []
        self.pd_q = []

        t0 = time()
        print('Calculating screened potential', file=self.fd)
        for iq, q_c in enumerate(self.qd.ibzk_kc):
            thisqd = KPointDescriptor([q_c])
            pd = PWDescriptor(self.ecut, wfs.gd, complex, thisqd)
            nG = pd.ngmax

            chi0.Ga = self.blockcomm.rank * nG
            chi0.Gb = min(chi0.Ga + nG, nG)
            chi0_wGG = np.zeros((1, nG, nG), complex)
            if np.allclose(q_c, 0.0):
                chi0_wxvG = np.zeros((1, 2, 3, nG), complex)
                chi0_wvv = np.zeros((1, 3, 3), complex)
            else:
                chi0_wxvG = None
                chi0_wvv = None

            chi0._calculate(pd, chi0_wGG, chi0_wxvG, chi0_wvv,
                            0, self.nbands, spins='all', extend_head=False)
            chi0_GG = chi0_wGG[0]

            # Calculate eps^{-1}_GG
            if pd.kd.gamma:
                # Generate fine grid in vicinity of gamma
                kd = self.calc.wfs.kd
                N = 4
                N_c = np.array([N, N, N])
                if self.truncation is not None:
                    # Only average periodic directions if trunction is used
                    N_c[kd.N_c == 1] = 1
                qf_qc = monkhorst_pack(N_c) / kd.N_c
                qf_qc *= 1.0e-6
                U_scc = kd.symmetry.op_scc
                qf_qc = kd.get_ibz_q_points(qf_qc, U_scc)[0]
                weight_q = kd.q_weights
                qf_qv = 2 * np.pi * np.dot(qf_qc, pd.gd.icell_cv)
                a_q = np.sum(np.dot(chi0_wvv[0], qf_qv.T) * qf_qv.T, axis=0)
                a0_qG = np.dot(qf_qv, chi0_wxvG[0, 0])
                a1_qG = np.dot(qf_qv, chi0_wxvG[0, 1])
                einv_GG = np.zeros((nG, nG), complex)
                # W_GG = np.zeros((nG, nG), complex)
                for iqf in range(len(qf_qv)):
                    chi0_GG[0] = a0_qG[iqf]
                    chi0_GG[:, 0] = a1_qG[iqf]
                    chi0_GG[0, 0] = a_q[iqf]
                    sqrV_G = get_coulomb_kernel(pd,
                                                kd.N_c,
                                                truncation=self.truncation,
                                                wstc=self.wstc,
                                                q_v=qf_qv[iqf])**0.5
                    sqrV_G *= ac**0.5  # Multiply by adiabatic coupling
                    e_GG = np.eye(nG) - chi0_GG * sqrV_G * sqrV_G[:,
                                                                  np.newaxis]
                    einv_GG += np.linalg.inv(e_GG) * weight_q[iqf]
                    # einv_GG = np.linalg.inv(e_GG) * weight_q[iqf]
                    # W_GG += (einv_GG * sqrV_G * sqrV_G[:, np.newaxis]
                    #          * weight_q[iqf])
            else:
                sqrV_G = get_coulomb_kernel(pd,
                                            self.kd.N_c,
                                            truncation=self.truncation,
                                            wstc=self.wstc)**0.5
                sqrV_G *= ac**0.5  # Multiply by adiabatic coupling
                e_GG = np.eye(nG) - chi0_GG * sqrV_G * sqrV_G[:, np.newaxis]
                einv_GG = np.linalg.inv(e_GG)
                # W_GG = einv_GG * sqrV_G * sqrV_G[:, np.newaxis]

            # Now calculate W_GG
            if pd.kd.gamma:
                # Reset bare Coulomb interaction
                sqrV_G = get_coulomb_kernel(pd,
                                            self.kd.N_c,
                                            truncation=self.truncation,
                                            wstc=self.wstc)**0.5
            W_GG = einv_GG * sqrV_G * sqrV_G[:, np.newaxis]
            if self.integrate_gamma != 0:
                # Numerical integration of Coulomb interaction at all q-points
                if self.integrate_gamma == 2:
                    reduced = True
                else:
                    reduced = False
                V0, sqrV0 = get_integrated_kernel(pd,
                                                  self.kd.N_c,
                                                  truncation=self.truncation,
                                                  reduced=reduced,
                                                  N=100)
                W_GG[0, 0] = einv_GG[0, 0] * V0
                W_GG[0, 1:] = einv_GG[0, 1:] * sqrV0 * sqrV_G[1:]
                W_GG[1:, 0] = einv_GG[1:, 0] * sqrV_G[1:] * sqrV0
            elif self.integrate_gamma == 0 and pd.kd.gamma:
                # Analytical integration at gamma
                bzvol = (2 * np.pi)**3 / self.vol / self.qd.nbzkpts
                Rq0 = (3 * bzvol / (4 * np.pi))**(1. / 3.)
                V0 = 16 * np.pi**2 * Rq0 / bzvol
                sqrV0 = (4 * np.pi)**(1.5) * Rq0**2 / bzvol / 2
                W_GG[0, 0] = einv_GG[0, 0] * V0
                W_GG[0, 1:] = einv_GG[0, 1:] * sqrV0 * sqrV_G[1:]
                W_GG[1:, 0] = einv_GG[1:, 0] * sqrV_G[1:] * sqrV0
            else:
                pass

            if pd.kd.gamma:
                e = 1 / einv_GG[0, 0].real
                print('    RPA dielectric constant is: %3.3f' % e,
                      file=self.fd)
            self.Q_qaGii.append(chi0.Q_aGii)
            self.pd_q.append(pd)
            self.W_qGG.append(W_GG)

            if iq % (self.qd.nibzkpts // 5 + 1) == 2:
                dt = time() - t0
                tleft = dt * self.qd.nibzkpts / (iq + 1) - dt
                print('  Finished %s q-points in %s - Estimated %s left' %
                      (iq + 1, timedelta(seconds=round(dt)),
                       timedelta(seconds=round(tleft))), file=self.fd)
Exemple #13
0
    def __init__(self,
                 calc=None,
                 spinors=False,
                 ecut=10.,
                 scale=1.0,
                 nbands=None,
                 valence_bands=None,
                 conduction_bands=None,
                 eshift=None,
                 gw_skn=None,
                 truncation=None,
                 integrate_gamma=1,
                 txt=sys.stdout,
                 mode='BSE',
                 wfile=None,
                 write_h=False,
                 write_v=False):

        """Creates the BSE object

        calc: str or calculator object
            The string should refer to the .gpw file contaning KS orbitals
        ecut: float
            Plane wave cutoff energy (eV)
        nbands: int
            Number of bands used for the screened interaction
        valence_bands: list
            Valence bands used in the BSE Hamiltonian
        conduction_bands: list
            Conduction bands used in the BSE Hamiltonian
        eshift: float
            Scissors operator opening the gap (eV)
        gw_skn: list / array
            List or array defining the gw quasiparticle energies used in
            the BSE Hamiltonian. Should match spin, k-points and
            valence/conduction bands
        truncation: str
            Coulomb truncation scheme. Can be either wigner-seitz,
            2D, 1D, or 0D
        integrate_gamma: int
            Method to integrate the Coulomb interaction. 1 is a numerical
            integration at all q-points with G=[0,0,0] - this breaks the
            symmetry slightly. 0 is analytical integration at q=[0,0,0] only -
            this conserves the symmetry. integrate_gamma=2 is the same as 1,
            but the average is only carried out in the non-periodic directions.
        txt: str
            txt output
        mode: str
            Theory level used. can be RPA TDHF or BSE. Only BSE is screened.
        wfile: str
            File for saving screened interaction and some other stuff
            needed later
        write_h: bool
            If True, write the BSE Hamiltonian to H_SS.ulm.
        write_v: bool
            If True, write eigenvalues and eigenstates to v_TS.ulm
        """

        # Calculator
        if isinstance(calc, str):
            calc = GPAW(calc, txt=None, communicator=serial_comm)
        self.calc = calc
        self.spinors = spinors
        self.scale = scale

        assert mode in ['RPA', 'TDHF', 'BSE']
        # assert calc.wfs.kd.nbzkpts % world.size == 0

        # txt file
        if world.rank != 0:
            txt = devnull
        elif isinstance(txt, str):
            txt = open(txt, 'w', 1)
        self.fd = txt

        self.ecut = ecut / Hartree
        self.nbands = nbands
        self.mode = mode
        self.truncation = truncation
        if integrate_gamma == 0 and truncation is not None:
            print('***WARNING*** Analytical Coulomb integration is ' +
                  'not expected to work with Coulomb truncation. ' +
                  'Use integrate_gamma=1', file=self.fd)
        self.integrate_gamma = integrate_gamma
        self.wfile = wfile
        self.write_h = write_h
        self.write_v = write_v

        # Find q-vectors and weights in the IBZ:
        self.kd = calc.wfs.kd
        if -1 in self.kd.bz2bz_ks:
            print('***WARNING*** Symmetries may not be right ' +
                  'Use gamma-centered grid to be sure', file=self.fd)
        offset_c = 0.5 * ((self.kd.N_c + 1) % 2) / self.kd.N_c
        bzq_qc = monkhorst_pack(self.kd.N_c) + offset_c
        self.qd = KPointDescriptor(bzq_qc)
        self.qd.set_symmetry(self.calc.atoms, self.kd.symmetry)
        self.vol = abs(np.linalg.det(calc.wfs.gd.cell_cv))

        # bands
        self.spins = self.calc.wfs.nspins
        if self.spins == 2:
            if self.spinors:
                self.spinors = False
                print('***WARNING*** Presently the spinor version' +
                      'does not work for spin-polarized calculations.' +
                      'Performing scalar calculation', file=self.fd)
            assert len(valence_bands[0]) == len(valence_bands[1])
            assert len(conduction_bands[0]) == len(conduction_bands[1])
        if valence_bands is None:
            nv = self.calc.wfs.setups.nvalence
            valence_bands = [[nv // 2 - 1]]
            if self.spins == 2:
                valence_bands *= 2
        if conduction_bands is None:
            conduction_bands = [[valence_bands[-1] + 1]]
            if self.spins == 2:
                conduction_bands *= 2

        self.val_sn = np.array(valence_bands)
        if len(np.shape(self.val_sn)) == 1:
            self.val_sn = np.array([self.val_sn])
        self.con_sn = np.array(conduction_bands)
        if len(np.shape(self.con_sn)) == 1:
            self.con_sn = np.array([self.con_sn])

        self.td = True
        for n in self.val_sn[0]:
            if n in self.con_sn[0]:
                self.td = False
        if len(self.val_sn) == 2:
            for n in self.val_sn[1]:
                if n in self.con_sn[1]:
                    self.td = False

        self.nv = len(self.val_sn[0])
        self.nc = len(self.con_sn[0])
        if eshift is not None:
            eshift /= Hartree
        if gw_skn is not None:
            assert self.nv + self.nc == len(gw_skn[0, 0])
            assert self.kd.nibzkpts == len(gw_skn[0])
            gw_skn = gw_skn[:, self.kd.bz2ibz_k]
            # assert self.kd.nbzkpts == len(gw_skn[0])
            gw_skn /= Hartree
        self.gw_skn = gw_skn
        self.eshift = eshift

        # Number of pair orbitals
        self.nS = self.kd.nbzkpts * self.nv * self.nc * self.spins
        self.nS *= (self.spinors + 1)**2

        # Wigner-Seitz stuff
        if self.truncation == 'wigner-seitz':
            self.wstc = WignerSeitzTruncatedCoulomb(self.calc.wfs.gd.cell_cv,
                                                    self.kd.N_c, self.fd)
        else:
            self.wstc = None

        self.print_initialization(self.td, self.eshift, self.gw_skn)
Exemple #14
0
from ase import *
from ase.lattice import bulk
from ase.dft import monkhorst_pack
from ase.parallel import paropen
from gpaw import *
from gpaw.wavefunctions.pw import PW
from gpaw.xc.exx import EXX

# Monkhorst-Pack grid shifted to be gamma centered
k = 8
kpts = monkhorst_pack([k, k, k])
kpts += [1. / (2 * k), 1. / ( 2 * k), 1. / (2 * k)]

cell = bulk('C', 'fcc', a=3.553).get_cell()
a = Atoms('C2', cell=cell, pbc=True,
          scaled_positions=((0, 0, 0), (0.25, 0.25, 0.25)))

calc = GPAW(mode=PW(600),
            xc='PBE',
            occupations=FermiDirac(width=0.01),
            convergence={'density': 1.e-6},
            kpts=kpts,
            txt='diamond_pbe.txt',
            )

a.set_calculator(calc)
E_pbe = a.get_potential_energy()

exx = EXX(calc, txt='diamond_exx.txt')
exx.calculate()
E_hf = exx.get_total_energy()
Exemple #15
0
from ase.dft import monkhorst_pack

assert [0, 0, 0] in  monkhorst_pack((1, 3, 5)).tolist()
assert [0, 0, 0] not in  monkhorst_pack((1, 3, 6)).tolist()
assert len(monkhorst_pack((3, 4, 6))) == 3 * 4 * 6

from ase.units import Hartree, Bohr, kJ, mol, kcal, kB, fs
print Hartree, Bohr, kJ/mol, kcal/mol, kB*300, fs, 1/fs

from ase.structure import bulk
ru = bulk('Ru', 'hcp', a=2.7) * (2, 2, 1)
assert abs(ru.get_distance(0, 7, mic=True) - ru.get_distance(1, 6)) < 1e-14
assert abs(ru.get_distance(0, 5, mic=True) - 2.7) < 1e-14
Exemple #16
0
 def kpts(self, kpts):
     if not hasattr(self, '_kpts') or kpts != self._kpts:
         self._kpts = kpts
         self.kpts_kc = monkhorst_pack(self.kpts)
         if hasattr(self, 'im_r'):
             del self.im_r  # we'll have to recalculate
Exemple #17
0
old_cell = GR.get_cell()
old_cell[2, 2] = 2 * c
Graphite.set_cell(old_cell)

BNNB.set_pbc((True, True, True))
old_cell = BN.get_cell()
old_cell[2, 2] = 2 * c
BNNB.set_cell(old_cell)
BNNB.center()

GRBN.set_pbc((True, True, True))
old_cell = BN.get_cell()
old_cell[2, 2] = (NGr + NBN) * c
GRBN.set_cell(old_cell)

atoms = GRBN

from ase.dft import monkhorst_pack
calc = GPAW(
    h=0.18,
    mode=PW(600),
    kpts=monkhorst_pack((29, 29, 1)) + np.array([0., 0., 0.]),
    xc='PBE',
    occupations=FermiDirac(0.01),
    parallel={'band': 1},
)

atoms.set_calculator(calc)

ncpus = 16