Exemple #1
0
    def initialize(self, energies, bias=0):
        """
            energies: list of energies 
            for which the transmission function should be evaluated.
            bias.
            Will precalculate the surface greenfunctions of the tip and
            surface.
        """
        self.bias = bias
        self.energies = energies
        nenergies = len(energies)
        pl1, pl2 = self.pl1, self.pl2
        nbf1, nbf2 = len(self.h1), len(self.h2)

        #periodic part of the tip
        hs1_dii = self.h10[:pl1, :pl1], self.s10[:pl1, :pl1]
        hs1_dij = self.h10[:pl1, pl1:2 * pl1], self.s10[:pl1, pl1:2 * pl1]
        #coupling betwen per. and non. per part of the tip
        h1_im = np.zeros((pl1, nbf1), complex)
        s1_im = np.zeros((pl1, nbf1), complex)
        h1_im[:pl1, :pl1], s1_im[:pl1, :pl1] = hs1_dij
        hs1_dim = [h1_im, s1_im]

        #periodic part the surface
        hs2_dii = self.h20[:pl2, :pl2], self.s20[:pl2, :pl2]
        hs2_dij = self.h20[pl2:2 * pl2, :pl2], self.s20[pl2:2 * pl2, :pl2]
        #coupling betwen per. and non. per part of the surface
        h2_im = np.zeros((pl2, nbf2), complex)
        s2_im = np.zeros((pl2, nbf2), complex)
        h2_im[-pl2:, -pl2:], s2_im[-pl2:, -pl2:] = hs2_dij
        hs2_dim = [h2_im, s2_im]

        #tip and surface greenfunction
        self.selfenergy1 = LeadSelfEnergy(hs1_dii, hs1_dij, hs1_dim, self.eta1)
        self.selfenergy2 = LeadSelfEnergy(hs2_dii, hs2_dij, hs2_dim, self.eta2)
        self.greenfunction1 = GreenFunction(
            self.h1 - self.bias * self.w * self.s1, self.s1,
            [self.selfenergy1], self.eta1)
        self.greenfunction2 = GreenFunction(
            self.h2 - self.bias * (self.w - 1) * self.s2, self.s2,
            [self.selfenergy2], self.eta2)

        #Shift the bands due to the bias.
        bias_shift1 = -bias * self.w
        bias_shift2 = -bias * (self.w - 1)
        self.selfenergy1.set_bias(bias_shift1)
        self.selfenergy2.set_bias(bias_shift2)

        #tip and surface greenfunction matrices.
        nbf1_small = nbf1  #XXX Change this for efficiency in the future
        nbf2_small = nbf2  #XXX -||-
        coupling_list1 = range(nbf1_small)  # XXX -||-
        coupling_list2 = range(nbf2_small)  # XXX -||-
        self.gft1_emm = np.zeros((nenergies, nbf1_small, nbf1_small), complex)
        self.gft2_emm = np.zeros((nenergies, nbf2_small, nbf2_small), complex)

        for e, energy in enumerate(self.energies):
            if self.log != None:  # and world.rank == 0:
                T = time.localtime()
                self.log.write(' %d:%02d:%02d, ' % (T[3], T[4], T[5]) +
                               '%d, %d, %02f\n' % (world.rank, e, energy))
            gft1_mm = self.greenfunction1.retarded(energy)[coupling_list1]
            gft1_mm = np.take(gft1_mm, coupling_list1, axis=1)

            gft2_mm = self.greenfunction2.retarded(energy)[coupling_list2]
            gft2_mm = np.take(gft2_mm, coupling_list2, axis=1)

            self.gft1_emm[e] = gft1_mm
            self.gft2_emm[e] = gft2_mm

            if self.log != None and world.rank == 0:
                self.log.flush()
Exemple #2
0
    def initialize(self):
        if self.initialized:
            return

        print('# Initializing calculator...', file=self.log)

        p = self.input_parameters
        if p['s'] is None:
            p['s'] = np.identity(len(p['h']))

        identical_leads = False
        if p['h2'] is None:
            p['h2'] = p['h1']  # Lead2 is idendical to lead1
            identical_leads = True

        if p['s1'] is None:
            p['s1'] = np.identity(len(p['h1']))

        if identical_leads:
            p['s2'] = p['s1']
        else:
            if p['s2'] is None:
                p['s2'] = np.identity(len(p['h2']))

        h_mm = p['h']
        s_mm = p['s']
        pl1 = len(p['h1']) // 2
        pl2 = len(p['h2']) // 2
        h1_ii = p['h1'][:pl1, :pl1]
        h1_ij = p['h1'][:pl1, pl1:2 * pl1]
        s1_ii = p['s1'][:pl1, :pl1]
        s1_ij = p['s1'][:pl1, pl1:2 * pl1]
        h2_ii = p['h2'][:pl2, :pl2]
        h2_ij = p['h2'][pl2: 2 * pl2, :pl2]
        s2_ii = p['s2'][:pl2, :pl2]
        s2_ij = p['s2'][pl2: 2 * pl2, :pl2]

        if p['hc1'] is None:
            nbf = len(h_mm)
            h1_im = np.zeros((pl1, nbf), complex)
            s1_im = np.zeros((pl1, nbf), complex)
            h1_im[:pl1, :pl1] = h1_ij
            s1_im[:pl1, :pl1] = s1_ij
            p['hc1'] = h1_im
            p['sc1'] = s1_im
        else:
            h1_im = p['hc1']
            if p['sc1'] is not None:
                s1_im = p['sc1']
            else:
                s1_im = np.zeros(h1_im.shape, complex)
                p['sc1'] = s1_im

        if p['hc2'] is None:
            h2_im = np.zeros((pl2, nbf), complex)
            s2_im = np.zeros((pl2, nbf), complex)
            h2_im[-pl2:, -pl2:] = h2_ij
            s2_im[-pl2:, -pl2:] = s2_ij
            p['hc2'] = h2_im
            p['sc2'] = s2_im
        else:
            h2_im = p['hc2']
            if p['sc2'] is not None:
                s2_im = p['sc2']
            else:
                s2_im = np.zeros(h2_im.shape, complex)
                p['sc2'] = s2_im

        align_bf = p['align_bf']
        if align_bf is not None:
            diff = ((h_mm[align_bf, align_bf] - h1_ii[align_bf, align_bf]) /
                    s_mm[align_bf, align_bf])
            print('# Aligning scat. H to left lead H. diff=', diff,
                  file=self.log)
            h_mm -= diff * s_mm

        # Setup lead self-energies
        # All infinitesimals must be > 0
        assert np.all(np.array((p['eta'], p['eta1'], p['eta2'])) > 0.0)
        self.selfenergies = [LeadSelfEnergy((h1_ii, s1_ii),
                                            (h1_ij, s1_ij),
                                            (h1_im, s1_im),
                                            p['eta1']),
                             LeadSelfEnergy((h2_ii, s2_ii),
                                            (h2_ij, s2_ij),
                                            (h2_im, s2_im),
                                            p['eta2'])]
        box = p['box']
        if box is not None:
            print('Using box probe!')
            self.selfenergies.append(
                BoxProbe(eta=box[0], a=box[1], b=box[2], energies=box[3],
                         S=s_mm, T=0.3))

        # setup scattering green function
        self.greenfunction = GreenFunction(selfenergies=self.selfenergies,
                                           H=h_mm,
                                           S=s_mm,
                                           eta=p['eta'])

        self.initialized = True
Exemple #3
0
class STM:
    def __init__(self,
                 h1,
                 s1,
                 h2,
                 s2,
                 h10,
                 s10,
                 h20,
                 s20,
                 eta1,
                 eta2,
                 w=0.5,
                 pdos=[],
                 logfile=None):
        """XXX
        
        1. Tip
        2. Surface
        
        h1: ndarray
            Hamiltonian and overlap matrix for the isolated tip
            calculation.  Note, h1 should contain (at least) one
            principal layer.

        h2: ndarray
            Same as h1 but for the surface.

        h10: ndarray
            periodic part of the tip. must include two and only
            two principal layers.

        h20: ndarray
            same as h10, but for the surface

        The s* are the corresponding overlap matrices.  eta1, and eta
        2 are (finite) infinitesimals.  """

        self.pl1 = len(h10) // 2  #principal layer size for the tip
        self.pl2 = len(h20) // 2  #principal layer size for the surface
        self.h1 = h1
        self.s1 = s1
        self.h2 = h2
        self.s2 = s2
        self.h10 = h10
        self.s10 = s10
        self.h20 = h20
        self.s20 = s20
        self.eta1 = eta1
        self.eta2 = eta2
        self.w = w  #asymmetry of the applied bias (0.5=>symmetric)
        self.pdos = []
        self.log = logfile

    def initialize(self, energies, bias=0):
        """
            energies: list of energies 
            for which the transmission function should be evaluated.
            bias.
            Will precalculate the surface greenfunctions of the tip and
            surface.
        """
        self.bias = bias
        self.energies = energies
        nenergies = len(energies)
        pl1, pl2 = self.pl1, self.pl2
        nbf1, nbf2 = len(self.h1), len(self.h2)

        #periodic part of the tip
        hs1_dii = self.h10[:pl1, :pl1], self.s10[:pl1, :pl1]
        hs1_dij = self.h10[:pl1, pl1:2 * pl1], self.s10[:pl1, pl1:2 * pl1]
        #coupling betwen per. and non. per part of the tip
        h1_im = np.zeros((pl1, nbf1), complex)
        s1_im = np.zeros((pl1, nbf1), complex)
        h1_im[:pl1, :pl1], s1_im[:pl1, :pl1] = hs1_dij
        hs1_dim = [h1_im, s1_im]

        #periodic part the surface
        hs2_dii = self.h20[:pl2, :pl2], self.s20[:pl2, :pl2]
        hs2_dij = self.h20[pl2:2 * pl2, :pl2], self.s20[pl2:2 * pl2, :pl2]
        #coupling betwen per. and non. per part of the surface
        h2_im = np.zeros((pl2, nbf2), complex)
        s2_im = np.zeros((pl2, nbf2), complex)
        h2_im[-pl2:, -pl2:], s2_im[-pl2:, -pl2:] = hs2_dij
        hs2_dim = [h2_im, s2_im]

        #tip and surface greenfunction
        self.selfenergy1 = LeadSelfEnergy(hs1_dii, hs1_dij, hs1_dim, self.eta1)
        self.selfenergy2 = LeadSelfEnergy(hs2_dii, hs2_dij, hs2_dim, self.eta2)
        self.greenfunction1 = GreenFunction(
            self.h1 - self.bias * self.w * self.s1, self.s1,
            [self.selfenergy1], self.eta1)
        self.greenfunction2 = GreenFunction(
            self.h2 - self.bias * (self.w - 1) * self.s2, self.s2,
            [self.selfenergy2], self.eta2)

        #Shift the bands due to the bias.
        bias_shift1 = -bias * self.w
        bias_shift2 = -bias * (self.w - 1)
        self.selfenergy1.set_bias(bias_shift1)
        self.selfenergy2.set_bias(bias_shift2)

        #tip and surface greenfunction matrices.
        nbf1_small = nbf1  #XXX Change this for efficiency in the future
        nbf2_small = nbf2  #XXX -||-
        coupling_list1 = range(nbf1_small)  # XXX -||-
        coupling_list2 = range(nbf2_small)  # XXX -||-
        self.gft1_emm = np.zeros((nenergies, nbf1_small, nbf1_small), complex)
        self.gft2_emm = np.zeros((nenergies, nbf2_small, nbf2_small), complex)

        for e, energy in enumerate(self.energies):
            if self.log != None:  # and world.rank == 0:
                T = time.localtime()
                self.log.write(' %d:%02d:%02d, ' % (T[3], T[4], T[5]) +
                               '%d, %d, %02f\n' % (world.rank, e, energy))
            gft1_mm = self.greenfunction1.retarded(energy)[coupling_list1]
            gft1_mm = np.take(gft1_mm, coupling_list1, axis=1)

            gft2_mm = self.greenfunction2.retarded(energy)[coupling_list2]
            gft2_mm = np.take(gft2_mm, coupling_list2, axis=1)

            self.gft1_emm[e] = gft1_mm
            self.gft2_emm[e] = gft2_mm

            if self.log != None and world.rank == 0:
                self.log.flush()

    def get_transmission(self, v_12, v_11_2=None, v_22_1=None):
        """XXX

        v_12:
            coupling between tip and surface 
        v_11_2:
            correction to "on-site" tip elements due to the 
            surface (eq.16). Is only included to first order.
        v_22_1:
            corretion to "on-site" surface elements due to he
            tip (eq.17). Is only included to first order.
        """

        dim0 = v_12.shape[0]
        dim1 = v_12.shape[1]

        nenergies = len(self.energies)
        T_e = np.empty(nenergies, float)
        v_21 = dagger(v_12)
        for e, energy in enumerate(self.energies):
            gft1 = self.gft1_emm[e]
            if v_11_2 != None:
                gf1 = np.dot(v_11_2, np.dot(gft1, v_11_2))
                gf1 += gft1  #eq. 16
            else:
                gf1 = gft1

            gft2 = self.gft2_emm[e]
            if v_22_1 != None:
                gf2 = np.dot(v_22_1, np.dot(gft2, v_22_1))
                gf2 += gft2  #eq. 17
            else:
                gf2 = gft2

            a1 = (gf1 - dagger(gf1))
            a2 = (gf2 - dagger(gf2))
            self.v_12 = v_12
            self.a2 = a2
            self.v_21 = v_21
            self.a1 = a1
            v12_a2 = np.dot(v_12, a2[:dim1])
            v21_a1 = np.dot(v_21, a1[-dim0:])
            self.v12_a2 = v12_a2
            self.v21_a1 = v21_a1
            T = -np.trace(np.dot(v12_a2[:, :dim1], v21_a1[:, -dim0:]))  #eq. 11
            assert abs(T.imag).max() < 1e-14
            T_e[e] = T.real
            self.T_e = T_e
        return T_e

    def get_current(self, bias, v_12, v_11_2=None, v_22_1=None):
        """Very simple function to calculate the current.
        
        Asummes zero temperature.

        bias: type? XXX
            bias voltage (V)
            
        v_12: XXX
            coupling between tip and surface.
            
        v_11_2:
            correction to onsite elements of the tip
            due to the potential of the surface.
        v_22_1:
            correction to onsite elements of the surface
            due to the potential of the tip.
        """
        energies = self.energies
        T_e = self.get_transmission(v_12, v_11_2, v_22_1)
        bias_window = -np.array([bias * self.w, bias * (self.w - 1)])
        bias_window.sort()
        self.bias_window = bias_window
        #print 'bias window', np.around(bias_window,3)
        #print 'Shift of tip lead do to the bias:', self.selfenergy1.bias
        #print 'Shift of surface lead do to the bias:', self.selfenergy2.bias
        i1 = sum(energies < bias_window[0])
        i2 = sum(energies < bias_window[1])
        step = 1
        if i2 < i1:
            step = -1

        return np.sign(bias) * np.trapz(x=energies[i1:i2:step],
                                        y=T_e[i1:i2:step])
Exemple #4
0
class TransportCalculator:
    """Determine transport properties of a device sandwiched between
    two semi-infinite leads using a Green function method.
    """

    def __init__(self, **kwargs):
        """Create the transport calculator.

        Parameters:

        h : (N, N) ndarray
            Hamiltonian matrix for the central region.
        s : {None, (N, N) ndarray}, optional
            Overlap matrix for the central region.
            Use None for an orthonormal basis.
        h1 : (N1, N1) ndarray
            Hamiltonian matrix for lead1.
        h2 : {None, (N2, N2) ndarray}, optional
            Hamiltonian matrix for lead2. You may use None if lead1 and lead2
            are identical.
        s1 : {None, (N1, N1) ndarray}, optional
            Overlap matrix for lead1. Use None for an orthonomormal basis.
        hc1 : {None, (N1, N) ndarray}, optional
            Hamiltonian coupling matrix between the first principal
            layer in lead1 and the central region.
        hc2 : {None, (N2, N} ndarray), optional
            Hamiltonian coupling matrix between the first principal
            layer in lead2 and the central region.
        sc1 : {None, (N1, N) ndarray}, optional
            Overlap coupling matrix between the first principal
            layer in lead1 and the central region.
        sc2 : {None, (N2, N) ndarray}, optional
            Overlap coupling matrix between the first principal
            layer in lead2 and the central region.
        energies : {None, array_like}, optional
            Energy points for which calculated transport properties are
            evaluated.
        eta : {1.0e-5, float}, optional
            Infinitesimal for the central region Green function.
        eta1/eta2 : {1.0e-5, float}, optional
            Infinitesimal for lead1/lead2 Green function.
        align_bf : {None, int}, optional
            Use align_bf=m to shift the central region
            by a constant potential such that the m'th onsite element
            in the central region is aligned to the m'th onsite element
            in lead1 principal layer.
        logfile : {None, str}, optional
            Write a logfile to file with name `logfile`.
            Use '-' to write to std out.
        eigenchannels: {0, int}, optional
            Number of eigenchannel transmission coefficients to
            calculate.
        pdos : {None, (N,) array_like}, optional
            Specify which basis functions to calculate the
            projected density of states for.
        dos : {False, bool}, optional
            The total density of states of the central region.
        box: XXX
            YYY

        If hc1/hc2 are None, they are assumed to be identical to
        the coupling matrix elements between neareste neighbor
        principal layers in lead1/lead2.

        Examples:

        >>> import numpy as np
        >>> h = np.array((0,)).reshape((1,1))
        >>> h1 = np.array((0, -1, -1, 0)).reshape(2,2)
        >>> energies = np.arange(-3, 3, 0.1)
        >>> calc = TransportCalculator(h=h, h1=h1, energies=energies)
        >>> T = calc.get_transmission()

        """

        # The default values for all extra keywords
        self.input_parameters = {'energies': None,
                                 'h': None,
                                 'h1': None,
                                 'h2': None,
                                 's': None,
                                 's1': None,
                                 's2': None,
                                 'hc1': None,
                                 'hc2': None,
                                 'sc1': None,
                                 'sc2': None,
                                 'box': None,
                                 'align_bf': None,
                                 'eta1': 1e-5,
                                 'eta2': 1e-5,
                                 'eta': 1e-5,
                                 'logfile': None,
                                 'eigenchannels': 0,
                                 'dos': False,
                                 'pdos': []}

        self.initialized = False  # Changed Hamiltonians?
        self.uptodate = False  # Changed energy grid?
        self.set(**kwargs)

    def set(self, **kwargs):
        for key in kwargs:
            if key in ['h', 'h1', 'h2', 'hc1', 'hc2',
                       's', 's1', 's2', 'sc1', 'sc2',
                       'eta', 'eta1', 'eta2', 'align_bf', 'box']:
                self.initialized = False
                self.uptodate = False
                break
            elif key in ['energies', 'eigenchannels', 'dos', 'pdos']:
                self.uptodate = False
            elif key not in self.input_parameters:
                raise KeyError('%r not a vaild keyword' % key)

        self.input_parameters.update(kwargs)
        log = self.input_parameters['logfile']
        if log is None:
            class Trash:
                def write(self, s):
                    pass

                def flush(self):
                    pass

            self.log = Trash()
        elif log == '-':
            from sys import stdout
            self.log = stdout
        elif 'logfile' in kwargs:
            self.log = open(log, 'w')

    def initialize(self):
        if self.initialized:
            return

        print('# Initializing calculator...', file=self.log)

        p = self.input_parameters
        if p['s'] is None:
            p['s'] = np.identity(len(p['h']))

        identical_leads = False
        if p['h2'] is None:
            p['h2'] = p['h1']  # Lead2 is idendical to lead1
            identical_leads = True

        if p['s1'] is None:
            p['s1'] = np.identity(len(p['h1']))

        if identical_leads:
            p['s2'] = p['s1']
        else:
            if p['s2'] is None:
                p['s2'] = np.identity(len(p['h2']))

        h_mm = p['h']
        s_mm = p['s']
        pl1 = len(p['h1']) // 2
        pl2 = len(p['h2']) // 2
        h1_ii = p['h1'][:pl1, :pl1]
        h1_ij = p['h1'][:pl1, pl1:2 * pl1]
        s1_ii = p['s1'][:pl1, :pl1]
        s1_ij = p['s1'][:pl1, pl1:2 * pl1]
        h2_ii = p['h2'][:pl2, :pl2]
        h2_ij = p['h2'][pl2: 2 * pl2, :pl2]
        s2_ii = p['s2'][:pl2, :pl2]
        s2_ij = p['s2'][pl2: 2 * pl2, :pl2]

        if p['hc1'] is None:
            nbf = len(h_mm)
            h1_im = np.zeros((pl1, nbf), complex)
            s1_im = np.zeros((pl1, nbf), complex)
            h1_im[:pl1, :pl1] = h1_ij
            s1_im[:pl1, :pl1] = s1_ij
            p['hc1'] = h1_im
            p['sc1'] = s1_im
        else:
            h1_im = p['hc1']
            if p['sc1'] is not None:
                s1_im = p['sc1']
            else:
                s1_im = np.zeros(h1_im.shape, complex)
                p['sc1'] = s1_im

        if p['hc2'] is None:
            h2_im = np.zeros((pl2, nbf), complex)
            s2_im = np.zeros((pl2, nbf), complex)
            h2_im[-pl2:, -pl2:] = h2_ij
            s2_im[-pl2:, -pl2:] = s2_ij
            p['hc2'] = h2_im
            p['sc2'] = s2_im
        else:
            h2_im = p['hc2']
            if p['sc2'] is not None:
                s2_im = p['sc2']
            else:
                s2_im = np.zeros(h2_im.shape, complex)
                p['sc2'] = s2_im

        align_bf = p['align_bf']
        if align_bf is not None:
            diff = ((h_mm[align_bf, align_bf] - h1_ii[align_bf, align_bf]) /
                    s_mm[align_bf, align_bf])
            print('# Aligning scat. H to left lead H. diff=', diff,
                  file=self.log)
            h_mm -= diff * s_mm

        # Setup lead self-energies
        # All infinitesimals must be > 0
        assert np.all(np.array((p['eta'], p['eta1'], p['eta2'])) > 0.0)
        self.selfenergies = [LeadSelfEnergy((h1_ii, s1_ii),
                                            (h1_ij, s1_ij),
                                            (h1_im, s1_im),
                                            p['eta1']),
                             LeadSelfEnergy((h2_ii, s2_ii),
                                            (h2_ij, s2_ij),
                                            (h2_im, s2_im),
                                            p['eta2'])]
        box = p['box']
        if box is not None:
            print('Using box probe!')
            self.selfenergies.append(
                BoxProbe(eta=box[0], a=box[1], b=box[2], energies=box[3],
                         S=s_mm, T=0.3))

        # setup scattering green function
        self.greenfunction = GreenFunction(selfenergies=self.selfenergies,
                                           H=h_mm,
                                           S=s_mm,
                                           eta=p['eta'])

        self.initialized = True

    def update(self):
        if self.uptodate:
            return

        p = self.input_parameters
        self.energies = p['energies']
        nepts = len(self.energies)
        nchan = p['eigenchannels']
        pdos = p['pdos']
        self.T_e = np.empty(nepts)
        if p['dos']:
            self.dos_e = np.empty(nepts)
        if pdos != []:
            self.pdos_ne = np.empty((len(pdos), nepts))
        if nchan > 0:
            self.eigenchannels_ne = np.empty((nchan, nepts))

        for e, energy in enumerate(self.energies):
            Ginv_mm = self.greenfunction.retarded(energy, inverse=True)
            lambda1_mm = self.selfenergies[0].get_lambda(energy)
            lambda2_mm = self.selfenergies[1].get_lambda(energy)
            a_mm = linalg.solve(Ginv_mm, lambda1_mm)
            b_mm = linalg.solve(dagger(Ginv_mm), lambda2_mm)
            T_mm = np.dot(a_mm, b_mm)
            if nchan > 0:
                t_n = linalg.eigvals(T_mm).real
                self.eigenchannels_ne[:, e] = np.sort(t_n)[-nchan:]
                self.T_e[e] = np.sum(t_n)
            else:
                self.T_e[e] = np.trace(T_mm).real

            print(energy, self.T_e[e], file=self.log)
            self.log.flush()

            if p['dos']:
                self.dos_e[e] = self.greenfunction.dos(energy)

            if pdos != []:
                self.pdos_ne[:, e] = np.take(self.greenfunction.pdos(energy),
                                             pdos)

        self.uptodate = True

    def print_pl_convergence(self):
        self.initialize()
        pl1 = len(self.input_parameters['h1']) // 2

        h_ii = self.selfenergies[0].h_ii
        s_ii = self.selfenergies[0].s_ii
        ha_ii = self.greenfunction.H[:pl1, :pl1]
        sa_ii = self.greenfunction.S[:pl1, :pl1]
        c1 = np.abs(h_ii - ha_ii).max()
        c2 = np.abs(s_ii - sa_ii).max()
        print('Conv (h,s)=%.2e, %2.e' % (c1, c2))

    def plot_pl_convergence(self):
        self.initialize()
        pl1 = len(self.input_parameters['h1']) // 2
        hlead = self.selfenergies[0].h_ii.real.diagonal()
        hprincipal = self.greenfunction.H.real.diagonal[:pl1]

        import pylab as pl
        pl.plot(hlead, label='lead')
        pl.plot(hprincipal, label='principal layer')
        pl.axis('tight')
        pl.show()

    def get_transmission(self):
        self.initialize()
        self.update()
        return self.T_e

    def get_dos(self):
        self.initialize()
        self.update()
        return self.dos_e

    def get_eigenchannels(self, n=None):
        """Get ``n`` first eigenchannels."""
        self.initialize()
        self.update()
        if n is None:
            n = self.input_parameters['eigenchannels']
        return self.eigenchannels_ne[:n]

    def get_pdos(self):
        self.initialize()
        self.update()
        return self.pdos_ne

    def subdiagonalize_bfs(self, bfs, apply=False):
        self.initialize()
        bfs = np.array(bfs)
        p = self.input_parameters
        h_mm = p['h']
        s_mm = p['s']
        ht_mm, st_mm, c_mm, e_m = subdiagonalize(h_mm, s_mm, bfs)
        if apply:
            self.uptodate = False
            h_mm[:] = ht_mm
            s_mm[:] = st_mm
            # Rotate coupling between lead and central region
            for alpha, sigma in enumerate(self.selfenergies):
                sigma.h_im[:] = np.dot(sigma.h_im, c_mm)
                sigma.s_im[:] = np.dot(sigma.s_im, c_mm)

        c_mm = np.take(c_mm, bfs, axis=0)
        c_mm = np.take(c_mm, bfs, axis=1)
        return ht_mm, st_mm, e_m.real, c_mm

    def cutcoupling_bfs(self, bfs, apply=False):
        self.initialize()
        bfs = np.array(bfs)
        p = self.input_parameters
        h_pp = p['h'].copy()
        s_pp = p['s'].copy()
        cutcoupling(h_pp, s_pp, bfs)
        if apply:
            self.uptodate = False
            p['h'][:] = h_pp
            p['s'][:] = s_pp
            for alpha, sigma in enumerate(self.selfenergies):
                for m in bfs:
                    sigma.h_im[:, m] = 0.0
                    sigma.s_im[:, m] = 0.0
        return h_pp, s_pp

    def lowdin_rotation(self, apply=False):
        p = self.input_parameters
        h_mm = p['h']
        s_mm = p['s']
        eig, rot_mm = linalg.eigh(s_mm)
        eig = np.abs(eig)
        rot_mm = np.dot(rot_mm / np.sqrt(eig), dagger(rot_mm))
        if apply:
            self.uptodate = False
            h_mm[:] = rotate_matrix(h_mm, rot_mm)  # rotate C region
            s_mm[:] = rotate_matrix(s_mm, rot_mm)
            for alpha, sigma in enumerate(self.selfenergies):
                sigma.h_im[:] = np.dot(sigma.h_im, rot_mm)  # rotate L-C coupl.
                sigma.s_im[:] = np.dot(sigma.s_im, rot_mm)

        return rot_mm

    def get_left_channels(self, energy, nchan=1):
        self.initialize()
        g_s_ii = self.greenfunction.retarded(energy)
        lambda_l_ii = self.selfenergies[0].get_lambda(energy)
        lambda_r_ii = self.selfenergies[1].get_lambda(energy)

        if self.greenfunction.S is not None:
            s_mm = self.greenfunction.S
            s_s_i, s_s_ii = linalg.eig(s_mm)
            s_s_i = np.abs(s_s_i)
            s_s_sqrt_i = np.sqrt(s_s_i)  # sqrt of eigenvalues
            s_s_sqrt_ii = np.dot(s_s_ii * s_s_sqrt_i, dagger(s_s_ii))
            s_s_isqrt_ii = np.dot(s_s_ii / s_s_sqrt_i, dagger(s_s_ii))

        lambdab_r_ii = np.dot(np.dot(s_s_isqrt_ii, lambda_r_ii), s_s_isqrt_ii)
        a_l_ii = np.dot(np.dot(g_s_ii, lambda_l_ii), dagger(g_s_ii))
        ab_l_ii = np.dot(np.dot(s_s_sqrt_ii, a_l_ii), s_s_sqrt_ii)
        lambda_i, u_ii = linalg.eig(ab_l_ii)
        ut_ii = np.sqrt(lambda_i / (2.0 * np.pi)) * u_ii
        m_ii = 2 * np.pi * np.dot(np.dot(dagger(ut_ii), lambdab_r_ii), ut_ii)
        T_i, c_in = linalg.eig(m_ii)
        T_i = np.abs(T_i)

        channels = np.argsort(-T_i)[:nchan]
        c_in = np.take(c_in, channels, axis=1)
        T_n = np.take(T_i, channels)
        v_in = np.dot(np.dot(s_s_isqrt_ii, ut_ii), c_in)

        return T_n, v_in
Exemple #5
0
    def initialize(self):
        if self.initialized:
            return

        print >> self.log, '# Initializing calculator...'

        p = self.input_parameters
        if p['s1'] == None:
            p['s1'] = np.identity(len(p['h1']))
        if p['s2'] == None:
            p['s2'] = np.identity(len(p['h2']))
        if p['s'] == None:
            p['s'] = np.identity(len(p['h']))
            
        h_mm = p['h']
        s_mm = p['s']
        pl1 = len(p['h1']) / 2
        pl2 = len(p['h2']) / 2
        h1_ii = p['h1'][:pl1, :pl1]
        h1_ij = p['h1'][:pl1, pl1:2 * pl1]
        s1_ii = p['s1'][:pl1, :pl1]
        s1_ij = p['s1'][:pl1, pl1:2 * pl1]
        h2_ii = p['h2'][:pl2, :pl2]
        h2_ij = p['h2'][pl2: 2 * pl2, :pl2]
        s2_ii = p['s2'][:pl2, :pl2]
        s2_ij = p['s2'][pl2: 2 * pl2, :pl2]
        
        if p['hc1'] is None:
            nbf = len(h_mm)
            h1_im = np.zeros((pl1, nbf), complex)
            s1_im = np.zeros((pl1, nbf), complex)
            h1_im[:pl1, :pl1] = h1_ij
            s1_im[:pl1, :pl1] = s1_ij
        else:
            h1_im = p['hc1']
            if p['sc1'] is not None:
                s1_im = p['sc1']
            else:
                s1_im = np.zeros(h1_im.shape, complex)

        if p['hc2'] is None:
            h2_im = np.zeros((pl2, nbf), complex)
            s2_im = np.zeros((pl2, nbf), complex)
            h2_im[-pl2:, -pl2:] = h2_ij
            s2_im[-pl2:, -pl2:] = s2_ij
        else:
            h2_im = p['hc2']
            if p['sc2'] is not None:
                s2_im[:] = p['sc2']
            else:
                s2_im = np.zeros(h2_im.shape, complex)

        align_bf = p['align_bf']
        if align_bf != None:
            diff = (h_mm[align_bf, align_bf] - h1_ii[align_bf, align_bf]) \
                   / s_mm[align_bf, align_bf]
            print >> self.log, '# Aligning scat. H to left lead H. diff=', diff
            h_mm -= diff * s_mm

        #setup lead self-energies
        self.selfenergies = [LeadSelfEnergy((h1_ii, s1_ii), 
                                            (h1_ij, s1_ij),
                                            (h1_im, s1_im),
                                            p['eta1']),
                             LeadSelfEnergy((h2_ii, s2_ii), 
                                            (h2_ij, s2_ij),
                                            (h2_im, s2_im),
                                            p['eta2'])]
        box = p['box']
        if box is not None:
            print 'Using box probe!'
            self.selfenergies.append(
                BoxProbe(eta=box[0], a=box[1], b=box[2], energies=box[3],
                         S=s_mm, T=0.3))
        
        #setup scattering green function
        self.greenfunction = GreenFunction(selfenergies=self.selfenergies,
                                           H=h_mm,
                                           S=s_mm,
                                           eta=p['eta'])

        self.initialized = True
Exemple #6
0
class TransportCalculator:
    """Determine transport properties of device sandwiched between
    semi-infinite leads using nonequillibrium Green function methods.
    """

    def __init__(self, **kwargs):
        """Bla Bla XXX
        
        energies is the energy grid on which the transport properties
        should be determined.
        
        h1 (h2) is a matrix representation of the Hamiltonian of two
        principal layers of the left (right) lead, and the coupling
        between such layers.
        
        h is a matrix representation of the Hamiltonian of the
        scattering region. This must include at least one lead
        principal layer on each side. The coupling in (out) of the
        scattering region is by default assumed to be identical to the
        coupling between left (right) principal layers.  However,
        these couplings can also be specified explicitly through hc1
        and hc2.
        
        s, s1, and s2 are the overlap matrices corresponding to h, h1,
        and h2. Default is the identity operator. sc1 and sc2 are the
        overlap matrices corresponding to the optional couplings hc1
        and hc2.
        
        align_bf specifies the principal layer basis index used to
        align the fermi levels of the lead and scattering regions.
        """
        
        # The default values for all extra keywords
        self.input_parameters = {'energies': None,
                                 'h': None,
                                 'h1': None,
                                 'h2': None,
                                 's': None,
                                 's1': None,
                                 's2': None,
                                 'hc1': None,
                                 'hc2': None,
                                 'sc1': None,
                                 'sc2': None,
                                 'box': None,
                                 'align_bf': None,
                                 'eta1': 1e-3,
                                 'eta2': 1e-3,
                                 'eta': 1e-3,
                                 'logfile': None, # '-',
                                 'eigenchannels': 0,
                                 'dos': False,
                                 'pdos': [],
                                 }
        self.initialized = False # Changed Hamiltonians?
        self.uptodate = False # Changed energy grid?
        self.set(**kwargs)

    def set(self, **kwargs):
        for key in kwargs:
            if key in ['h', 'h1', 'h2', 'hc1', 'hc2',
                       's', 's1', 's2', 'sc1', 'sc2',
                       'eta', 'eta1', 'eta2', 'align_bf', 'box']:
                self.initialized = False
                self.uptodate = False
                break
            elif key in ['energies', 'eigenchannels', 'dos', 'pdos']:
                self.uptodate = False
            elif key not in self.input_parameters:
                raise KeyError, '\'%s\' not a vaild keyword' % key

        self.input_parameters.update(kwargs)
        log = self.input_parameters['logfile']
        if log is None:
            class Trash:
                def write(self, s):
                    pass
                def flush(self):
                    pass
            self.log = Trash()
        elif log == '-':
            from sys import stdout
            self.log = stdout
        elif 'logfile' in kwargs:
            self.log = open(log, 'w')

    def initialize(self):
        if self.initialized:
            return

        print >> self.log, '# Initializing calculator...'

        p = self.input_parameters
        if p['s1'] == None:
            p['s1'] = np.identity(len(p['h1']))
        if p['s2'] == None:
            p['s2'] = np.identity(len(p['h2']))
        if p['s'] == None:
            p['s'] = np.identity(len(p['h']))
            
        h_mm = p['h']
        s_mm = p['s']
        pl1 = len(p['h1']) / 2
        pl2 = len(p['h2']) / 2
        h1_ii = p['h1'][:pl1, :pl1]
        h1_ij = p['h1'][:pl1, pl1:2 * pl1]
        s1_ii = p['s1'][:pl1, :pl1]
        s1_ij = p['s1'][:pl1, pl1:2 * pl1]
        h2_ii = p['h2'][:pl2, :pl2]
        h2_ij = p['h2'][pl2: 2 * pl2, :pl2]
        s2_ii = p['s2'][:pl2, :pl2]
        s2_ij = p['s2'][pl2: 2 * pl2, :pl2]
        
        if p['hc1'] is None:
            nbf = len(h_mm)
            h1_im = np.zeros((pl1, nbf), complex)
            s1_im = np.zeros((pl1, nbf), complex)
            h1_im[:pl1, :pl1] = h1_ij
            s1_im[:pl1, :pl1] = s1_ij
        else:
            h1_im = p['hc1']
            if p['sc1'] is not None:
                s1_im = p['sc1']
            else:
                s1_im = np.zeros(h1_im.shape, complex)

        if p['hc2'] is None:
            h2_im = np.zeros((pl2, nbf), complex)
            s2_im = np.zeros((pl2, nbf), complex)
            h2_im[-pl2:, -pl2:] = h2_ij
            s2_im[-pl2:, -pl2:] = s2_ij
        else:
            h2_im = p['hc2']
            if p['sc2'] is not None:
                s2_im[:] = p['sc2']
            else:
                s2_im = np.zeros(h2_im.shape, complex)

        align_bf = p['align_bf']
        if align_bf != None:
            diff = (h_mm[align_bf, align_bf] - h1_ii[align_bf, align_bf]) \
                   / s_mm[align_bf, align_bf]
            print >> self.log, '# Aligning scat. H to left lead H. diff=', diff
            h_mm -= diff * s_mm

        #setup lead self-energies
        self.selfenergies = [LeadSelfEnergy((h1_ii, s1_ii), 
                                            (h1_ij, s1_ij),
                                            (h1_im, s1_im),
                                            p['eta1']),
                             LeadSelfEnergy((h2_ii, s2_ii), 
                                            (h2_ij, s2_ij),
                                            (h2_im, s2_im),
                                            p['eta2'])]
        box = p['box']
        if box is not None:
            print 'Using box probe!'
            self.selfenergies.append(
                BoxProbe(eta=box[0], a=box[1], b=box[2], energies=box[3],
                         S=s_mm, T=0.3))
        
        #setup scattering green function
        self.greenfunction = GreenFunction(selfenergies=self.selfenergies,
                                           H=h_mm,
                                           S=s_mm,
                                           eta=p['eta'])

        self.initialized = True
    
    def update(self):
        if self.uptodate:
            return
        
        p = self.input_parameters
        self.energies = p['energies']
        nepts = len(self.energies)
        nchan = p['eigenchannels']
        pdos = p['pdos']
        self.T_e = np.empty(nepts)
        if p['dos']:
            self.dos_e = np.empty(nepts)
        if pdos != []:
            self.pdos_ne = np.empty((len(pdos), nepts))
        if nchan > 0:
            self.eigenchannels_ne = np.empty((nchan, nepts))

        for e, energy in enumerate(self.energies):
            Ginv_mm = self.greenfunction.retarded(energy, inverse=True)
            lambda1_mm = self.selfenergies[0].get_lambda(energy)
            lambda2_mm = self.selfenergies[1].get_lambda(energy)
            a_mm = linalg.solve(Ginv_mm, lambda1_mm)
            b_mm = linalg.solve(dagger(Ginv_mm), lambda2_mm)
            T_mm = np.dot(a_mm, b_mm)
            if nchan > 0:
                t_n = linalg.eigvals(T_mm).real
                self.eigenchannels_ne[:, e] = np.sort(t_n)[-nchan:]
                self.T_e[e] = np.sum(t_n)
            else:
                self.T_e[e] = np.trace(T_mm).real

            print >> self.log, energy, self.T_e[e]
            self.log.flush()

            if p['dos']:
                self.dos_e[e] = self.greenfunction.dos(energy)

            if pdos != []:
                self.pdos_ne[:, e] = np.take(self.greenfunction.pdos(energy),
                                             pdos)
        
        self.uptodate = True

    def print_pl_convergence(self):
        self.initialize()
        pl1 = len(self.input_parameters['h1']) / 2
        
        h_ii = self.selfenergies[0].h_ii
        s_ii = self.selfenergies[0].s_ii
        ha_ii = self.greenfunction.H[:pl1, :pl1]
        sa_ii = self.greenfunction.S[:pl1, :pl1]
        c1 = np.abs(h_ii - ha_ii).max()
        c2 = np.abs(s_ii - sa_ii).max()
        print 'Conv (h,s)=%.2e, %2.e' % (c1, c2)

    def plot_pl_convergence(self):
        self.initialize()
        pl1 = len(self.input_parameters['h1']) / 2       
        hlead = self.selfenergies[0].h_ii.real.diagonal()
        hprincipal = self.greenfunction.H.real.diagonal[:pl1]

        import pylab as pl
        pl.plot(hlead, label='lead')
        pl.plot(hprincipal, label='principal layer')
        pl.axis('tight')
        pl.show()

    def get_transmission(self):
        self.initialize()
        self.update()
        return self.T_e

    def get_dos(self):
        self.initialize()
        self.update()
        return self.dos_e

    def get_eigenchannels(self, n=None):
        """Get ``n`` first eigenchannels."""
        self.initialize()
        self.update()
        if n is None:
            n = self.input_parameters['eigenchannels']
        return self.eigenchannels_ne[:n]

    def get_pdos(self):
        self.initialize()
        self.update()
        return self.pdos_ne

    def subdiagonalize_bfs(self, bfs):
        self.initialize()
        bfs = np.array(bfs)
        p = self.input_parameters
        h_pp = p['h']
        s_pp = p['s']
        ht_pp, st_pp, c_pp, e_p = subdiagonalize(h_pp, s_pp, bfs)
        c_pp = np.take(c_pp, bfs, axis=0)
        c_pp = np.take(c_pp, bfs, axis=1)
        return ht_pp, st_pp, e_p, c_pp

    def cutcoupling_bfs(self, bfs):
        self.initialize()
        bfs = np.array(bfs)
        p = self.input_parameters
        h_pp = p['h'].copy()
        s_pp = p['s'].copy()
        cutcoupling(h_pp, s_pp, bfs)
        return h_pp, s_pp
        
    def get_left_channels(self, energy, nchan=1):
        self.initialize()
        g_s_ii = self.greenfunction.retarded(energy)
        lambda_l_ii = self.selfenergies[0].get_lambda(energy)
        lambda_r_ii = self.selfenergies[1].get_lambda(energy)

        if self.greenfunction.S is None:
            s_s_qsrt_ii = s_s_isqrt = np.identity(len(g_s_ii))
        else:
            s_mm = self.greenfunction.S
            s_s_i, s_s_ii = linalg.eig(s_mm)
            s_s_i = np.abs(s_s_i)
            s_s_sqrt_i = np.sqrt(s_s_i) # sqrt of eigenvalues  
            s_s_sqrt_ii = np.dot(s_s_ii * s_s_sqrt_i, dagger(s_s_ii))
            s_s_isqrt_ii = np.dot(s_s_ii / s_s_sqrt_i, dagger(s_s_ii))

        lambdab_r_ii = np.dot(np.dot(s_s_isqrt_ii, lambda_r_ii),s_s_isqrt_ii)
        a_l_ii = np.dot(np.dot(g_s_ii, lambda_l_ii), dagger(g_s_ii))
        ab_l_ii = np.dot(np.dot(s_s_sqrt_ii, a_l_ii), s_s_sqrt_ii)
        lambda_i, u_ii = linalg.eig(ab_l_ii)
        ut_ii = np.sqrt(lambda_i / (2.0 * np.pi)) * u_ii
        m_ii = 2 * np.pi * np.dot(np.dot(dagger(ut_ii), lambdab_r_ii),ut_ii)
        T_i,c_in = linalg.eig(m_ii)
        T_i = np.abs(T_i)
        
        channels = np.argsort(-T_i)[:nchan]
        c_in = np.take(c_in, channels, axis=1)
        T_n = np.take(T_i, channels)
        v_in = np.dot(np.dot(s_s_isqrt_ii, ut_ii), c_in)

        return T_n, v_in
Exemple #7
0
class STM:
    def __init__(self, h1, s1, h2, s2, h10, s10, h20, s20, eta1, eta2, w=0.5):
        """XXX
        
        1. Tip
        2. Surface
        
        h1: ndarray
            Hamiltonian and overlap matrix for the isolated tip
            calculation.  Note, h1 should contain (at least) one
            principal layer.

        h2: ndarray
            Same as h1 but for the surface.

        h10: ndarray
            periodic part of the tip. must include two and only
            two principal layers.

        h20: ndarray
            same as h10, but for the surface

        The s* are the corresponding overlap matrices.  eta1, and eta
        2 are (finite) infinitesimals.  """

        self.pl1 = len(h10) / 2  # principal layer size for the tip
        self.pl2 = len(h20) / 2  # principal layer size for the surface
        self.h1 = h1
        self.s1 = s1
        self.h2 = h2
        self.s2 = s2
        self.h10 = h10
        self.s10 = s10
        self.h20 = h20
        self.s20 = s20
        self.eta1 = eta1
        self.eta2 = eta2
        self.w = w  # asymmetry of the applied bias (0.5=>symmetric)

    def initialize(self, energies, bias=0):
        """
            energies: list of energies 
            for which the transmission function should be evaluated.
            bias.
            Will precalculate the surface greenfunctions of the tip and
            surface.
        """
        self.bias = bias
        self.energies = energies
        nenergies = len(energies)
        pl1, pl2 = self.pl1, self.pl2
        nbf1, nbf2 = len(self.h1), len(self.h2)

        # periodic part of the tip
        hs1_dii = self.h10[:pl1, :pl1], self.s10[:pl1, :pl1]
        hs1_dij = self.h10[:pl1, pl1 : 2 * pl1], self.s10[:pl1, pl1 : 2 * pl1]
        # coupling betwen per. and non. per part of the tip
        h1_im = np.zeros((pl1, nbf1), complex)
        s1_im = np.zeros((pl1, nbf1), complex)
        h1_im[:pl1, :pl1], s1_im[:pl1, :pl1] = hs1_dij
        hs1_dim = [h1_im, s1_im]

        # periodic part the surface
        hs2_dii = self.h20[:pl2, :pl2], self.s20[:pl2, :pl2]
        hs2_dij = self.h20[pl2 : 2 * pl2, :pl2], self.s20[pl2 : 2 * pl2, :pl2]
        # coupling betwen per. and non. per part of the surface
        h2_im = np.zeros((pl2, nbf2), complex)
        s2_im = np.zeros((pl2, nbf2), complex)
        h2_im[-pl2:, -pl2:], s2_im[-pl2:, -pl2:] = hs2_dij
        hs2_dim = [h2_im, s2_im]

        # tip and surface greenfunction
        self.selfenergy1 = LeadSelfEnergy(hs1_dii, hs1_dij, hs1_dim, self.eta1)
        self.selfenergy2 = LeadSelfEnergy(hs2_dii, hs2_dij, hs2_dim, self.eta2)
        self.greenfunction1 = GreenFunction(
            self.h1 - self.bias * self.w * self.s1, self.s1, [self.selfenergy1], self.eta1
        )
        self.greenfunction2 = GreenFunction(
            self.h2 - self.bias * (self.w - 1) * self.s2, self.s2, [self.selfenergy2], self.eta2
        )

        # Shift the bands due to the bias.
        bias_shift1 = -bias * self.w
        bias_shift2 = -bias * (self.w - 1)
        self.selfenergy1.set_bias(bias_shift1)
        self.selfenergy2.set_bias(bias_shift2)

        # tip and surface greenfunction matrices.
        nbf1_small = nbf1  # XXX Change this for efficiency in the future
        nbf2_small = nbf2  # XXX -||-
        coupling_list1 = range(nbf1_small)  # XXX -||-
        coupling_list2 = range(nbf2_small)  # XXX -||-
        self.gft1_emm = np.zeros((nenergies, nbf1_small, nbf1_small), complex)
        self.gft2_emm = np.zeros((nenergies, nbf2_small, nbf2_small), complex)

        for e, energy in enumerate(self.energies):
            gft1_mm = self.greenfunction1.retarded(energy)[coupling_list1]
            gft1_mm = np.take(gft1_mm, coupling_list1, axis=1)

            gft2_mm = self.greenfunction2.retarded(energy)[coupling_list2]
            gft2_mm = np.take(gft2_mm, coupling_list2, axis=1)

            self.gft1_emm[e] = gft1_mm
            self.gft2_emm[e] = gft2_mm

    def get_transmission(self, v_12, v_11_2=None, v_22_1=None):
        """XXX

        v_12:
            coupling between tip and surface 
        v_11_2:
            correction to "on-site" tip elements due to the 
            surface (eq.16). Is only included to first order.
        v_22_1:
            corretion to "on-site" surface elements due to he
            tip (eq.17). Is only included to first order.
        """

        dim0 = v_12.shape[0]
        dim1 = v_12.shape[1]

        nenergies = len(self.energies)
        T_e = np.empty(nenergies, float)
        v_21 = dagger(v_12)
        for e, energy in enumerate(self.energies):
            gft1 = self.gft1_emm[e]
            if v_11_2 != None:
                gf1 = np.dot(v_11_2, np.dot(gft1, v_11_2))
                gf1 += gft1  # eq. 16
            else:
                gf1 = gft1

            gft2 = self.gft2_emm[e]
            if v_22_1 != None:
                gf2 = np.dot(v_22_1, np.dot(gft2, v_22_1))
                gf2 += gft2  # eq. 17
            else:
                gf2 = gft2

            a1 = gf1 - dagger(gf1)
            a2 = gf2 - dagger(gf2)
            self.v_12 = v_12
            self.a2 = a2
            self.v_21 = v_21
            self.a1 = a1
            v12_a2 = np.dot(v_12, a2[:dim1])
            v21_a1 = np.dot(v_21, a1[-dim0:])
            self.v12_a2 = v12_a2
            self.v21_a1 = v21_a1
            T = -np.trace(np.dot(v12_a2[:, :dim1], v21_a1[:, -dim0:]))  # eq. 11
            T_e[e] = T
            self.T_e = T_e
        return T_e

    def get_current(self, bias, v_12, v_11_2=None, v_22_1=None):
        """Very simple function to calculate the current.
        
        Asummes zero temperature.

        bias: type? XXX
            bias voltage (V)
            
        v_12: XXX
            coupling between tip and surface.
            
        v_11_2:
            correction to onsite elements of the tip
            due to the potential of the surface.
        v_22_1:
            correction to onsite elements of the surface
            due to the potential of the tip.
        """
        energies = self.energies
        T_e = self.get_transmission(v_12, v_11_2, v_22_1)
        bias_window = -np.array([bias * self.w, bias * (self.w - 1)])
        bias_window.sort()
        self.bias_window = bias_window
        # print 'bias window', np.around(bias_window,3)
        # print 'Shift of tip lead do to the bias:', self.selfenergy1.bias
        # print 'Shift of surface lead do to the bias:', self.selfenergy2.bias
        i1 = sum(energies < bias_window[0])
        i2 = sum(energies < bias_window[1])
        step = 1
        if i2 < i1:
            step = -1

        return np.sign(bias) * np.trapz(x=energies[i1:i2:step], y=T_e[i1:i2:step])
Exemple #8
0
    def initialize(self, energies, bias=0):
        """
            energies: list of energies 
            for which the transmission function should be evaluated.
            bias.
            Will precalculate the surface greenfunctions of the tip and
            surface.
        """
        self.bias = bias
        self.energies = energies
        nenergies = len(energies)
        pl1, pl2 = self.pl1, self.pl2
        nbf1, nbf2 = len(self.h1), len(self.h2)

        # periodic part of the tip
        hs1_dii = self.h10[:pl1, :pl1], self.s10[:pl1, :pl1]
        hs1_dij = self.h10[:pl1, pl1 : 2 * pl1], self.s10[:pl1, pl1 : 2 * pl1]
        # coupling betwen per. and non. per part of the tip
        h1_im = np.zeros((pl1, nbf1), complex)
        s1_im = np.zeros((pl1, nbf1), complex)
        h1_im[:pl1, :pl1], s1_im[:pl1, :pl1] = hs1_dij
        hs1_dim = [h1_im, s1_im]

        # periodic part the surface
        hs2_dii = self.h20[:pl2, :pl2], self.s20[:pl2, :pl2]
        hs2_dij = self.h20[pl2 : 2 * pl2, :pl2], self.s20[pl2 : 2 * pl2, :pl2]
        # coupling betwen per. and non. per part of the surface
        h2_im = np.zeros((pl2, nbf2), complex)
        s2_im = np.zeros((pl2, nbf2), complex)
        h2_im[-pl2:, -pl2:], s2_im[-pl2:, -pl2:] = hs2_dij
        hs2_dim = [h2_im, s2_im]

        # tip and surface greenfunction
        self.selfenergy1 = LeadSelfEnergy(hs1_dii, hs1_dij, hs1_dim, self.eta1)
        self.selfenergy2 = LeadSelfEnergy(hs2_dii, hs2_dij, hs2_dim, self.eta2)
        self.greenfunction1 = GreenFunction(
            self.h1 - self.bias * self.w * self.s1, self.s1, [self.selfenergy1], self.eta1
        )
        self.greenfunction2 = GreenFunction(
            self.h2 - self.bias * (self.w - 1) * self.s2, self.s2, [self.selfenergy2], self.eta2
        )

        # Shift the bands due to the bias.
        bias_shift1 = -bias * self.w
        bias_shift2 = -bias * (self.w - 1)
        self.selfenergy1.set_bias(bias_shift1)
        self.selfenergy2.set_bias(bias_shift2)

        # tip and surface greenfunction matrices.
        nbf1_small = nbf1  # XXX Change this for efficiency in the future
        nbf2_small = nbf2  # XXX -||-
        coupling_list1 = range(nbf1_small)  # XXX -||-
        coupling_list2 = range(nbf2_small)  # XXX -||-
        self.gft1_emm = np.zeros((nenergies, nbf1_small, nbf1_small), complex)
        self.gft2_emm = np.zeros((nenergies, nbf2_small, nbf2_small), complex)

        for e, energy in enumerate(self.energies):
            gft1_mm = self.greenfunction1.retarded(energy)[coupling_list1]
            gft1_mm = np.take(gft1_mm, coupling_list1, axis=1)

            gft2_mm = self.greenfunction2.retarded(energy)[coupling_list2]
            gft2_mm = np.take(gft2_mm, coupling_list2, axis=1)

            self.gft1_emm[e] = gft1_mm
            self.gft2_emm[e] = gft2_mm