Exemple #1
0
def train(args):
    '''Run training'''
    # seed setting
    torch.manual_seed(args.seed)

    # debug mode setting
    # 0 would be fastest, but 1 seems to be reasonable
    # by considering reproducability
    # revmoe type check
    if args.debugmode < 2:
        chainer.config.type_check = False
        logging.info('torch type check is disabled')
    # use determinisitic computation or not
    if args.debugmode < 1:
        torch.backends.cudnn.deterministic = False
        logging.info('torch cudnn deterministic is disabled')
    else:
        torch.backends.cudnn.deterministic = True

    # check cuda availability
    if not torch.cuda.is_available():
        logging.warning('cuda is not available')

    # get input and output dimension info
    with open(args.valid_json, 'rb') as f:
        valid_json = json.load(f)['utts']
    utts = list(valid_json.keys())
    idim = int(valid_json[utts[0]]['input'][0]['shape'][1])
    odim = int(valid_json[utts[0]]['output'][0]['shape'][1])
    logging.info('#input dims : ' + str(idim))
    logging.info('#output dims: ' + str(odim))

    # specify attention, CTC, hybrid mode
    if args.mtlalpha == 1.0:
        mtl_mode = 'ctc'
        logging.info('Pure CTC mode')
    elif args.mtlalpha == 0.0:
        mtl_mode = 'att'
        logging.info('Pure attention mode')
    else:
        mtl_mode = 'mtl'
        logging.info('Multitask learning mode')

    # specify model architecture
    e2e = E2E(idim, odim, args)
    model = Loss(e2e, args.mtlalpha)

    # write model config
    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)
    model_conf = args.outdir + '/model.json'
    with open(model_conf, 'wb') as f:
        logging.info('writing a model config file to ' + model_conf)
        f.write(
            json.dumps((idim, odim, vars(args)), indent=4,
                       sort_keys=True).encode('utf_8'))
    for key in sorted(vars(args).keys()):
        logging.info('ARGS: ' + key + ': ' + str(vars(args)[key]))

    reporter = model.reporter

    # check the use of multi-gpu
    if args.ngpu > 1:
        model = torch.nn.DataParallel(model, device_ids=list(range(args.ngpu)))
        logging.info('batch size is automatically increased (%d -> %d)' %
                     (args.batch_size, args.batch_size * args.ngpu))
        args.batch_size *= args.ngpu

    # set torch device
    device = torch.device("cuda" if args.ngpu > 0 else "cpu")
    model = model.to(device)

    # Setup an optimizer
    if args.opt == 'adadelta':
        optimizer = torch.optim.Adadelta(model.parameters(),
                                         rho=0.95,
                                         eps=args.eps)
    elif args.opt == 'adam':
        optimizer = torch.optim.Adam(model.parameters())

    # FIXME: TOO DIRTY HACK
    setattr(optimizer, "target", reporter)
    setattr(optimizer, "serialize", lambda s: reporter.serialize(s))

    # Setup a converter
    converter = CustomConverter(e2e.subsample[0])

    # read json data
    with open(args.train_json, 'rb') as f:
        train_json = json.load(f)['utts']
    with open(args.valid_json, 'rb') as f:
        valid_json = json.load(f)['utts']

    # make minibatch list (variable length)
    train = make_batchset(train_json, args.batch_size, args.maxlen_in,
                          args.maxlen_out, args.minibatches)
    valid = make_batchset(valid_json, args.batch_size, args.maxlen_in,
                          args.maxlen_out, args.minibatches)
    # hack to make batchsze argument as 1
    # actual bathsize is included in a list
    train_iter = chainer.iterators.MultiprocessIterator(
        TransformDataset(train, converter.transform),
        batch_size=1,
        n_processes=1,
        n_prefetch=8)  #, maxtasksperchild=20)
    valid_iter = chainer.iterators.SerialIterator(TransformDataset(
        valid, converter.transform),
                                                  batch_size=1,
                                                  repeat=False,
                                                  shuffle=False)

    # Set up a trainer
    updater = CustomUpdater(model, args.grad_clip, train_iter, optimizer,
                            converter, device, args.ngpu)
    trainer = training.Trainer(updater, (args.epochs, 'epoch'),
                               out=args.outdir)

    # Resume from a snapshot
    if args.resume:
        logging.info('resumed from %s' % args.resume)
        torch_resume(args.resume, trainer)

    # Evaluate the model with the test dataset for each epoch
    trainer.extend(
        CustomEvaluator(model, valid_iter, reporter, converter, device))

    # Save attention weight each epoch
    if args.num_save_attention > 0 and args.mtlalpha != 1.0:
        data = sorted(list(valid_json.items())[:args.num_save_attention],
                      key=lambda x: int(x[1]['input'][0]['shape'][1]),
                      reverse=True)
        if hasattr(model, "module"):
            att_vis_fn = model.module.predictor.calculate_all_attentions
        else:
            att_vis_fn = model.predictor.calculate_all_attentions
        trainer.extend(PlotAttentionReport(att_vis_fn,
                                           data,
                                           args.outdir + "/att_ws",
                                           converter=converter,
                                           device=device),
                       trigger=(1, 'epoch'))

    # Make a plot for training and validation values
    trainer.extend(
        extensions.PlotReport([
            'main/loss', 'validation/main/loss', 'main/loss_ctc',
            'validation/main/loss_ctc', 'main/loss_att',
            'validation/main/loss_att'
        ],
                              'epoch',
                              file_name='loss.png'))
    trainer.extend(
        extensions.PlotReport(['main/acc', 'validation/main/acc'],
                              'epoch',
                              file_name='acc.png'))

    # Save best models
    trainer.extend(
        extensions.snapshot_object(model,
                                   'model.loss.best',
                                   savefun=torch_save),
        trigger=training.triggers.MinValueTrigger('validation/main/loss'))
    if mtl_mode is not 'ctc':
        trainer.extend(
            extensions.snapshot_object(model,
                                       'model.acc.best',
                                       savefun=torch_save),
            trigger=training.triggers.MaxValueTrigger('validation/main/acc'))

    # save snapshot which contains model and optimizer states
    trainer.extend(torch_snapshot(), trigger=(1, 'epoch'))

    # epsilon decay in the optimizer
    if args.opt == 'adadelta':
        if args.criterion == 'acc' and mtl_mode is not 'ctc':
            trainer.extend(restore_snapshot(model,
                                            args.outdir + '/model.acc.best',
                                            load_fn=torch_load),
                           trigger=CompareValueTrigger(
                               'validation/main/acc', lambda best_value,
                               current_value: best_value > current_value))
            trainer.extend(adadelta_eps_decay(args.eps_decay),
                           trigger=CompareValueTrigger(
                               'validation/main/acc', lambda best_value,
                               current_value: best_value > current_value))
        elif args.criterion == 'loss':
            trainer.extend(restore_snapshot(model,
                                            args.outdir + '/model.loss.best',
                                            load_fn=torch_load),
                           trigger=CompareValueTrigger(
                               'validation/main/loss', lambda best_value,
                               current_value: best_value < current_value))
            trainer.extend(adadelta_eps_decay(args.eps_decay),
                           trigger=CompareValueTrigger(
                               'validation/main/loss', lambda best_value,
                               current_value: best_value < current_value))

    # Write a log of evaluation statistics for each epoch
    trainer.extend(extensions.LogReport(trigger=(REPORT_INTERVAL,
                                                 'iteration')))
    report_keys = [
        'epoch', 'iteration', 'main/loss', 'main/loss_ctc', 'main/loss_att',
        'validation/main/loss', 'validation/main/loss_ctc',
        'validation/main/loss_att', 'main/acc', 'validation/main/acc',
        'elapsed_time'
    ]
    if args.opt == 'adadelta':
        trainer.extend(extensions.observe_value(
            'eps', lambda trainer: trainer.updater.get_optimizer('main').
            param_groups[0]["eps"]),
                       trigger=(REPORT_INTERVAL, 'iteration'))
        report_keys.append('eps')
    trainer.extend(extensions.PrintReport(report_keys),
                   trigger=(REPORT_INTERVAL, 'iteration'))

    trainer.extend(extensions.ProgressBar(update_interval=REPORT_INTERVAL))

    # Run the training
    trainer.run()
Exemple #2
0
def train(args):
    '''RUN TRAINING'''
    # seed setting
    torch.manual_seed(args.seed)

    # use determinisitic computation or not
    if args.debugmode < 1:
        torch.backends.cudnn.deterministic = False
        logging.info('torch cudnn deterministic is disabled')
    else:
        torch.backends.cudnn.deterministic = True

    # check cuda availability
    if not torch.cuda.is_available():
        logging.warning('cuda is not available')

    # get input and output dimension info
    with open(args.valid_json, 'rb') as f:
        valid_json = json.load(f)['utts']
    utts = list(valid_json.keys())

    # reverse input and output dimension
    idim = int(valid_json[utts[0]]['output'][0]['shape'][1])
    odim = int(valid_json[utts[0]]['input'][0]['shape'][1])
    if args.use_cbhg:
        args.spc_dim = int(valid_json[utts[0]]['input'][1]['shape'][1])
    if args.use_speaker_embedding:
        args.spk_embed_dim = int(valid_json[utts[0]]['input'][1]['shape'][0])
    else:
        args.spk_embed_dim = None
    logging.info('#input dims : ' + str(idim))
    logging.info('#output dims: ' + str(odim))

    # write model config
    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)
    model_conf = args.outdir + '/model.json'
    with open(model_conf, 'wb') as f:
        logging.info('writing a model config file to' + model_conf)
        f.write(
            json.dumps((idim, odim, vars(args)), indent=4,
                       sort_keys=True).encode('utf_8'))
    for key in sorted(vars(args).keys()):
        logging.info('ARGS: ' + key + ': ' + str(vars(args)[key]))

    # specify model architecture
    tacotron2 = Tacotron2(idim, odim, args)
    logging.info(tacotron2)

    # check the use of multi-gpu
    if args.ngpu > 1:
        tacotron2 = torch.nn.DataParallel(tacotron2,
                                          device_ids=list(range(args.ngpu)))
        logging.info('batch size is automatically increased (%d -> %d)' %
                     (args.batch_size, args.batch_size * args.ngpu))
        args.batch_size *= args.ngpu

    # set torch device
    device = torch.device("cuda" if args.ngpu > 0 else "cpu")
    tacotron2 = tacotron2.to(device)

    # define loss
    model = Tacotron2Loss(tacotron2, args.use_masking, args.bce_pos_weight)
    reporter = model.reporter

    # Setup an optimizer
    optimizer = torch.optim.Adam(model.parameters(),
                                 args.lr,
                                 eps=args.eps,
                                 weight_decay=args.weight_decay)

    # FIXME: TOO DIRTY HACK
    setattr(optimizer, 'target', reporter)
    setattr(optimizer, 'serialize', lambda s: reporter.serialize(s))

    # Setup a converter
    converter = CustomConverter(True, args.use_speaker_embedding,
                                args.use_cbhg)

    # read json data
    with open(args.train_json, 'rb') as f:
        train_json = json.load(f)['utts']
    with open(args.valid_json, 'rb') as f:
        valid_json = json.load(f)['utts']

    # make minibatch list (variable length)
    train_batchset = make_batchset(train_json, args.batch_size, args.maxlen_in,
                                   args.maxlen_out, args.minibatches,
                                   args.batch_sort_key)
    valid_batchset = make_batchset(valid_json, args.batch_size, args.maxlen_in,
                                   args.maxlen_out, args.minibatches,
                                   args.batch_sort_key)
    # hack to make batchsze argument as 1
    # actual bathsize is included in a list
    train_iter = chainer.iterators.MultiprocessIterator(TransformDataset(
        train_batchset, converter.transform),
                                                        batch_size=1,
                                                        n_processes=2,
                                                        n_prefetch=8,
                                                        maxtasksperchild=20)
    valid_iter = chainer.iterators.MultiprocessIterator(TransformDataset(
        valid_batchset, converter.transform),
                                                        batch_size=1,
                                                        repeat=False,
                                                        shuffle=False,
                                                        n_processes=2,
                                                        n_prefetch=8,
                                                        maxtasksperchild=20)

    # Set up a trainer
    updater = CustomUpdater(model, args.grad_clip, train_iter, optimizer,
                            converter, device)
    trainer = training.Trainer(updater, (args.epochs, 'epoch'),
                               out=args.outdir)

    # Resume from a snapshot
    if args.resume:
        logging.info('resumed from %s' % args.resume)
        torch_resume(args.resume, trainer)

    # Evaluate the model with the test dataset for each epoch
    trainer.extend(
        CustomEvaluator(model, valid_iter, reporter, converter, device))

    # Save snapshot for each epoch
    trainer.extend(torch_snapshot(), trigger=(1, 'epoch'))

    # Save best models
    trainer.extend(
        extensions.snapshot_object(tacotron2,
                                   'model.loss.best',
                                   savefun=torch_save),
        trigger=training.triggers.MinValueTrigger('validation/main/loss'))

    # Save attention figure for each epoch
    if args.num_save_attention > 0:
        data = sorted(list(valid_json.items())[:args.num_save_attention],
                      key=lambda x: int(x[1]['input'][0]['shape'][1]),
                      reverse=True)
        if hasattr(tacotron2, "module"):
            att_vis_fn = tacotron2.module.calculate_all_attentions
        else:
            att_vis_fn = tacotron2.calculate_all_attentions
        trainer.extend(PlotAttentionReport(att_vis_fn,
                                           data,
                                           args.outdir + '/att_ws',
                                           converter=CustomConverter(
                                               False,
                                               args.use_speaker_embedding),
                                           device=device,
                                           reverse=True),
                       trigger=(1, 'epoch'))

    # Make a plot for training and validation values
    plot_keys = [
        'main/loss', 'validation/main/loss', 'main/l1_loss',
        'validation/main/l1_loss', 'main/mse_loss', 'validation/main/mse_loss',
        'main/bce_loss', 'validation/main/bce_loss'
    ]
    trainer.extend(
        extensions.PlotReport(['main/l1_loss', 'validation/main/l1_loss'],
                              'epoch',
                              file_name='l1_loss.png'))
    trainer.extend(
        extensions.PlotReport(['main/mse_loss', 'validation/main/mse_loss'],
                              'epoch',
                              file_name='mse_loss.png'))
    trainer.extend(
        extensions.PlotReport(['main/bce_loss', 'validation/main/bce_loss'],
                              'epoch',
                              file_name='bce_loss.png'))
    if args.use_cbhg:
        plot_keys += [
            'main/cbhg_l1_loss', 'validation/main/cbhg_l1_loss',
            'main/cbhg_mse_loss', 'validation/main/cbhg_mse_loss'
        ]
        trainer.extend(
            extensions.PlotReport(
                ['main/cbhg_l1_loss', 'validation/main/cbhg_l1_loss'],
                'epoch',
                file_name='cbhg_l1_loss.png'))
        trainer.extend(
            extensions.PlotReport(
                ['main/cbhg_mse_loss', 'validation/main/cbhg_mse_loss'],
                'epoch',
                file_name='cbhg_mse_loss.png'))
    trainer.extend(
        extensions.PlotReport(plot_keys, 'epoch', file_name='loss.png'))

    # Write a log of evaluation statistics for each epoch
    trainer.extend(extensions.LogReport(trigger=(REPORT_INTERVAL,
                                                 'iteration')))
    report_keys = plot_keys[:]
    report_keys[0:0] = ['epoch', 'iteration', 'elapsed_time']
    trainer.extend(extensions.PrintReport(report_keys),
                   trigger=(REPORT_INTERVAL, 'iteration'))
    trainer.extend(extensions.ProgressBar(update_interval=REPORT_INTERVAL))

    # Run the training
    trainer.run()
Exemple #3
0
def train(args):
    # display torch version
    logging.info('torch version = ' + torch.__version__)

    # seed setting
    nseed = args.seed
    torch.manual_seed(nseed)
    logging.info('torch seed = ' + str(nseed))

    # debug mode setting
    # 0 would be fastest, but 1 seems to be reasonable
    # by considering reproducability
    # use determinisitic computation or not
    if args.debugmode < 1:
        torch.backends.cudnn.deterministic = False
        logging.info('torch cudnn deterministic is disabled')
    else:
        torch.backends.cudnn.deterministic = True

    # check cuda and cudnn availability
    if not torch.cuda.is_available():
        logging.warning('cuda is not available')

    # get special label ids
    unk = args.char_list_dict['<unk>']
    eos = args.char_list_dict['<eos>']
    # read tokens as a sequence of sentences
    train = read_tokens(args.train_label, args.char_list_dict)
    val = read_tokens(args.valid_label, args.char_list_dict)
    # count tokens
    n_train_tokens, n_train_oovs = count_tokens(train, unk)
    n_val_tokens, n_val_oovs = count_tokens(val, unk)
    logging.info('#vocab = ' + str(args.n_vocab))
    logging.info('#sentences in the training data = ' + str(len(train)))
    logging.info('#tokens in the training data = ' + str(n_train_tokens))
    logging.info('oov rate in the training data = %.2f %%' %
                 (n_train_oovs / n_train_tokens * 100))
    logging.info('#sentences in the validation data = ' + str(len(val)))
    logging.info('#tokens in the validation data = ' + str(n_val_tokens))
    logging.info('oov rate in the validation data = %.2f %%' %
                 (n_val_oovs / n_val_tokens * 100))

    # Create the dataset iterators
    train_iter = ParallelSentenceIterator(train,
                                          args.batchsize,
                                          max_length=args.maxlen,
                                          sos=eos,
                                          eos=eos)
    val_iter = ParallelSentenceIterator(val,
                                        args.batchsize,
                                        max_length=args.maxlen,
                                        sos=eos,
                                        eos=eos,
                                        repeat=False)
    logging.info('#iterations per epoch = ' +
                 str(len(train_iter.batch_indices)))
    logging.info('#total iterations = ' +
                 str(args.epoch * len(train_iter.batch_indices)))
    # Prepare an RNNLM model
    rnn = RNNLM(args.n_vocab, args.layer, args.unit)
    model = ClassifierWithState(rnn)
    if args.ngpu > 1:
        logging.warn("currently, multi-gpu is not supported. use single gpu.")
    if args.ngpu > 0:
        # Make the specified GPU current
        gpu_id = 0
        model.cuda(gpu_id)
    else:
        gpu_id = -1

    # Save model conf to json
    model_conf = args.outdir + '/model.json'
    with open(model_conf, 'wb') as f:
        logging.info('writing a model config file to ' + model_conf)
        f.write(
            json.dumps(vars(args), indent=4, sort_keys=True).encode('utf_8'))

    # Set up an optimizer
    if args.opt == 'sgd':
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
    elif args.opt == 'adam':
        optimizer = torch.optim.Adam(model.parameters())

    # FIXME: TOO DIRTY HACK
    reporter = model.reporter
    setattr(optimizer, "target", reporter)
    setattr(optimizer, "serialize", lambda s: reporter.serialize(s))

    updater = BPTTUpdater(train_iter,
                          model,
                          optimizer,
                          gpu_id,
                          gradclip=args.gradclip)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.outdir)
    trainer.extend(LMEvaluator(val_iter, model, reporter, device=gpu_id))
    trainer.extend(
        extensions.LogReport(postprocess=compute_perplexity,
                             trigger=(REPORT_INTERVAL, 'iteration')))
    trainer.extend(extensions.PrintReport(
        ['epoch', 'iteration', 'perplexity', 'val_perplexity',
         'elapsed_time']),
                   trigger=(REPORT_INTERVAL, 'iteration'))
    trainer.extend(extensions.ProgressBar(update_interval=REPORT_INTERVAL))
    # Save best models
    trainer.extend(torch_snapshot(filename='snapshot.ep.{.updater.epoch}'))
    trainer.extend(
        extensions.snapshot_object(model,
                                   'rnnlm.model.{.updater.epoch}',
                                   savefun=torch_save))
    # T.Hori: MinValueTrigger should be used, but it fails when resuming
    trainer.extend(
        MakeSymlinkToBestModel('validation/main/loss', 'rnnlm.model'))

    if args.resume:
        logging.info('resumed from %s' % args.resume)
        torch_resume(args.resume, trainer)

    trainer.run()

    # compute perplexity for test set
    if args.test_label:
        logging.info('test the best model')
        torch_load(args.outdir + '/rnnlm.model.best', model)
        test = read_tokens(args.test_label, args.char_list_dict)
        n_test_tokens, n_test_oovs = count_tokens(test, unk)
        logging.info('#sentences in the test data = ' + str(len(test)))
        logging.info('#tokens in the test data = ' + str(n_test_tokens))
        logging.info('oov rate in the test data = %.2f %%' %
                     (n_test_oovs / n_test_tokens * 100))
        test_iter = ParallelSentenceIterator(test,
                                             args.batchsize,
                                             max_length=args.maxlen,
                                             sos=eos,
                                             eos=eos,
                                             repeat=False)
        evaluator = LMEvaluator(test_iter, model, reporter, device=gpu_id)
        result = evaluator()
        logging.info('test perplexity: ' +
                     str(np.exp(float(result['main/loss']))))