def main(conf): # Make the model model, _ = make_model_and_optimizer(conf['train_conf']) # Load best model with open(os.path.join(conf['exp_dir'], 'best_k_models.json'), "r") as f: best_k = json.load(f) best_model_path = min(best_k, key=best_k.get) # Load checkpoint checkpoint = torch.load(best_model_path, map_location='cpu') state = checkpoint['state_dict'] state_copy = state.copy() # Remove unwanted keys for keys, values in state.items(): if keys.startswith('loss'): del state_copy[keys] print(keys) model = torch_utils.load_state_dict_in(state_copy, model) # Handle device placement if conf['use_gpu']: model.cuda() model_device = next(model.parameterss()).device test_set = LibriMix(csv_dir=conf['test_dir'], task=conf['task'], sample_rate=conf['sample_rate'], n_src=conf['train_conf']['data']['n_src'], segment=None) # Uses all segment length # Used to reorder sources only loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from='pw_mtx') # Randomly choose the indexes of sentences to save. eval_save_dir = os.path.join(conf['exp_dir'], conf['out_dir']) ex_save_dir = os.path.join(eval_save_dir, 'examples/') if conf['n_save_ex'] == -1: conf['n_save_ex'] = len(test_set) save_idx = random.sample(range(len(test_set)), conf['n_save_ex']) series_list = [] torch.no_grad().__enter__() for idx in tqdm(range(len(test_set))): # Forward the network on the mixture. mix, sources = tensors_to_device(test_set[idx], device=model_device) est_sources = model(mix.unsqueeze(0)) loss, reordered_sources = loss_func(est_sources, sources[None], return_est=True) mix_np = mix.cpu().data.numpy() sources_np = sources.squeeze().cpu().data.numpy() est_sources_np = reordered_sources.squeeze().cpu().data.numpy() # For each utterance, we get a dictionary with the mixture path, # the input and output metrics utt_metrics = get_metrics(mix_np, sources_np, est_sources_np, sample_rate=conf['sample_rate']) utt_metrics['mix_path'] = test_set.mixture_path series_list.append(pd.Series(utt_metrics)) # Save some examples in a folder. Wav files and metrics as text. if idx in save_idx: local_save_dir = os.path.join(ex_save_dir, 'ex_{}/'.format(idx)) os.makedirs(local_save_dir, exist_ok=True) sf.write(local_save_dir + "mixture.wav", mix_np, conf['sample_rate']) # Loop over the sources and estimates for src_idx, src in enumerate(sources_np): sf.write(local_save_dir + "s{}.wav".format(src_idx), src, conf['sample_rate']) for src_idx, est_src in enumerate(est_sources_np): sf.write(local_save_dir + "s{}_estimate.wav".format(src_idx), est_src, conf['sample_rate']) # Write local metrics to the example folder. with open(local_save_dir + 'metrics.json', 'w') as f: json.dump(utt_metrics, f, indent=0) # Save all metrics to the experiment folder. all_metrics_df = pd.DataFrame(series_list) all_metrics_df.to_csv(os.path.join(eval_save_dir, 'all_metrics.csv')) # Print and save summary metrics final_results = {} for metric_name in compute_metrics: input_metric_name = 'input_' + metric_name ldf = all_metrics_df[metric_name] - all_metrics_df[input_metric_name] final_results[metric_name] = all_metrics_df[metric_name].mean() final_results[metric_name + '_imp'] = ldf.mean() print('Overall metrics :') pprint(final_results) with open(os.path.join(eval_save_dir, 'final_metrics.json'), 'w') as f: json.dump(final_results, f, indent=0)
def main(conf): compute_metrics = update_compute_metrics(conf["compute_wer"], COMPUTE_METRICS) anno_df = pd.read_csv( Path(conf["test_dir"]).parent.parent.parent / "test_annotations.csv") wer_tracker = (MockWERTracker() if not conf["compute_wer"] else WERTracker( ASR_MODEL_PATH, anno_df)) model_path = os.path.join(conf["exp_dir"], "best_model.pth") model = DPRNNTasNet.from_pretrained(model_path) # Handle device placement if conf["use_gpu"]: model.cuda() model_device = next(model.parameters()).device test_set = LibriMix( csv_dir=conf["test_dir"], task=conf["task"], sample_rate=conf["sample_rate"], n_src=conf["train_conf"]["data"]["n_src"], segment=None, return_id=True, ) # Uses all segment length # Used to reorder sources only loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from="pw_mtx") # Randomly choose the indexes of sentences to save. eval_save_dir = os.path.join(conf["exp_dir"], conf["out_dir"]) ex_save_dir = os.path.join(eval_save_dir, "examples/") if conf["n_save_ex"] == -1: conf["n_save_ex"] = len(test_set) save_idx = random.sample(range(len(test_set)), conf["n_save_ex"]) series_list = [] torch.no_grad().__enter__() for idx in tqdm(range(len(test_set))): # Forward the network on the mixture. mix, sources, ids = test_set[idx] mix, sources = tensors_to_device([mix, sources], device=model_device) est_sources = model(mix.unsqueeze(0)) loss, reordered_sources = loss_func(est_sources, sources[None], return_est=True) mix_np = mix.cpu().data.numpy() sources_np = sources.cpu().data.numpy() est_sources_np = reordered_sources.squeeze(0).cpu().data.numpy() # For each utterance, we get a dictionary with the mixture path, # the input and output metrics utt_metrics = get_metrics( mix_np, sources_np, est_sources_np, sample_rate=conf["sample_rate"], metrics_list=COMPUTE_METRICS, ) utt_metrics["mix_path"] = test_set.mixture_path est_sources_np_normalized = normalize_estimates(est_sources_np, mix_np) utt_metrics.update(**wer_tracker( mix=mix_np, clean=sources_np, estimate=est_sources_np_normalized, wav_id=ids, sample_rate=conf["sample_rate"], )) series_list.append(pd.Series(utt_metrics)) # Save some examples in a folder. Wav files and metrics as text. if idx in save_idx: local_save_dir = os.path.join(ex_save_dir, "ex_{}/".format(idx)) os.makedirs(local_save_dir, exist_ok=True) sf.write(local_save_dir + "mixture.wav", mix_np, conf["sample_rate"]) # Loop over the sources and estimates for src_idx, src in enumerate(sources_np): sf.write(local_save_dir + "s{}.wav".format(src_idx), src, conf["sample_rate"]) for src_idx, est_src in enumerate(est_sources_np_normalized): sf.write( local_save_dir + "s{}_estimate.wav".format(src_idx), est_src, conf["sample_rate"], ) # Write local metrics to the example folder. with open(local_save_dir + "metrics.json", "w") as f: json.dump(utt_metrics, f, indent=0) # Save all metrics to the experiment folder. all_metrics_df = pd.DataFrame(series_list) all_metrics_df.to_csv(os.path.join(eval_save_dir, "all_metrics.csv")) # Print and save summary metrics final_results = {} for metric_name in compute_metrics: input_metric_name = "input_" + metric_name ldf = all_metrics_df[metric_name] - all_metrics_df[input_metric_name] final_results[metric_name] = all_metrics_df[metric_name].mean() final_results[metric_name + "_imp"] = ldf.mean() print("Overall metrics :") pprint(final_results) if conf["compute_wer"]: print("\nWER report") wer_card = wer_tracker.final_report_as_markdown() print(wer_card) # Save the report with open(os.path.join(eval_save_dir, "final_wer.md"), "w") as f: f.write(wer_card) with open(os.path.join(eval_save_dir, "final_metrics.json"), "w") as f: json.dump(final_results, f, indent=0) model_dict = torch.load(model_path, map_location="cpu") os.makedirs(os.path.join(conf["exp_dir"], "publish_dir"), exist_ok=True) publishable = save_publishable( os.path.join(conf["exp_dir"], "publish_dir"), model_dict, metrics=final_results, train_conf=train_conf, )
def main(conf): model_path = os.path.join(conf["exp_dir"], "best_model.pth") model = TransMask.from_pretrained(model_path) # Handle device placement if conf["use_gpu"]: model.cuda() model_device = next(model.parameters()).device if conf['file_path'] == '': test_set = LibriMix( csv_dir=conf["test_dir"], task=conf["task"], sample_rate=conf["sample_rate"], n_src=conf["train_conf"]["masknet"]["n_src"], segment=None, ) # Uses all segment length # Used to reorder sources only loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from="pw_mtx") # Randomly choose the indexes of sentences to save. eval_save_dir = os.path.join(conf["exp_dir"], conf["out_dir"]) ex_save_dir = os.path.join(eval_save_dir, "examples/") if conf["n_save_ex"] == -1 and conf['file_path'] == '': conf["n_save_ex"] = len(test_set) save_idx = random.sample(range(len(test_set)), conf["n_save_ex"]) else: save_idx = 0 series_list = [] torch.no_grad().__enter__() sdr = 0 rtf = 0 if conf['file_path'] != '': file_path = conf['file_path'] if os.path.isdir(file_path): wavs = [ os.path.join(file_path, wav) for wav in os.listdir(file_path) if '.wav' in wav ] for wav in wavs: inference_wav(wav, conf, model_device, model, ex_save_dir) else: inference_wav(file_path, conf, model_device, model, ex_save_dir) return for idx in tqdm(range(len(test_set))): # Forward the network on the mixture. mix, sources = tensors_to_device(test_set[idx], device=model_device) mul = 8 mix = mix.view(-1, 1).repeat(1, mul).view(-1) sources = sources.repeat(1, mul) #print('DEVICE') #print(model_device) ss = time() est_sources = model(mix.unsqueeze(0)) dur = time() - ss ll = len(mix) / 8000 rtf += (dur / ll) print(rtf / (idx + 1)) #import pdb;pdb.set_trace() loss, reordered_sources = loss_func(est_sources, sources[None], return_est=True) mix_np = mix.cpu().data.numpy() sources_np = sources.cpu().data.numpy() est_sources_np = reordered_sources.squeeze(0).cpu().data.numpy() # For each utterance, we get a dictionary with the mixture path, # the input and output metrics utt_metrics = get_metrics( mix_np, sources_np, est_sources_np, sample_rate=conf["sample_rate"], metrics_list=compute_metrics, ) sdr += utt_metrics['sdr'] print(sdr / (idx + 1)) utt_metrics["mix_path"] = test_set.mixture_path series_list.append(pd.Series(utt_metrics)) # Save some examples in a folder. Wav files and metrics as text. if idx in save_idx: local_save_dir = os.path.join(ex_save_dir, "ex_{}/".format(idx)) os.makedirs(local_save_dir, exist_ok=True) sf.write(local_save_dir + "mixture.wav", mix_np, conf["sample_rate"]) # Loop over the sources and estimates for src_idx, src in enumerate(sources_np): sf.write(local_save_dir + "s{}.wav".format(src_idx), src, conf["sample_rate"]) for src_idx, est_src in enumerate(est_sources_np): est_src *= np.max(np.abs(mix_np)) / np.max(np.abs(est_src)) sf.write( local_save_dir + "s{}_estimate.wav".format(src_idx), est_src, conf["sample_rate"], ) # Write local metrics to the example folder. with open(local_save_dir + "metrics.json", "w") as f: json.dump(utt_metrics, f, indent=0) # Save all metrics to the experiment folder. all_metrics_df = pd.DataFrame(series_list) all_metrics_df.to_csv(os.path.join(eval_save_dir, "all_metrics.csv")) # Print and save summary metrics final_results = {} for metric_name in compute_metrics: input_metric_name = "input_" + metric_name ldf = all_metrics_df[metric_name] - all_metrics_df[input_metric_name] final_results[metric_name] = all_metrics_df[metric_name].mean() final_results[metric_name + "_imp"] = ldf.mean() print("Overall metrics :") pprint(final_results) with open(os.path.join(eval_save_dir, "final_metrics.json"), "w") as f: json.dump(final_results, f, indent=0) model_dict = torch.load(model_path, map_location="cpu") os.makedirs(os.path.join(conf["exp_dir"], "publish_dir"), exist_ok=True) # publishable = save_publishable( save_publishable( os.path.join(conf["exp_dir"], "publish_dir"), model_dict, metrics=final_results, train_conf=train_conf, )
# Handle device placement if conf["use_gpu"]: model.cuda() model_device = next(model.parameters()).device <<<<<<< HEAD test_set = WhamDataset( conf["test_dir"], conf["task"], sample_rate=conf["sample_rate"], nondefault_nsrc=model.masker.n_src, segment=None, ======= test_set = LibriMix( csv_dir=conf["test_dir"], task=conf["task"], sample_rate=conf["sample_rate"], n_src=conf["train_conf"]["data"]["n_src"], segment=None, return_id=True, >>>>>>> 210b5e4eb8ce24fe25780e008c89a4bb71bbd0ea ) # Uses all segment length # Used to reorder sources only loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from="pw_mtx") # Randomly choose the indexes of sentences to save. <<<<<<< HEAD ex_save_dir = os.path.join(conf["exp_dir"], "examples/") ======= eval_save_dir = os.path.join(conf["exp_dir"], conf["out_dir"]) ex_save_dir = os.path.join(eval_save_dir, "examples/") >>>>>>> 210b5e4eb8ce24fe25780e008c89a4bb71bbd0ea