def test_save_and_load_tasnet(fb): model1 = LSTMTasNet(n_src=2, hid_size=4, n_layers=1, n_filters=32, dropout=0.0, fb_name=fb,) test_input = torch.randn(1, 800) model_conf = model1.serialize() reconstructed_model = LSTMTasNet.from_pretrained(model_conf) assert_allclose(model1(test_input), reconstructed_model(test_input))
def test_save_and_load_tasnet(fb): _default_test_model( LSTMTasNet( n_src=2, hid_size=4, n_layers=1, n_filters=32, dropout=0.0, fb_name=fb, ))