Exemple #1
0
    def BP(self, s, out=None):
        """Perform backprojection.

        Output must have the right 2D/3D shape. Input may also be flattened.

        Output must also be contiguous and float32. This isn't required for the
        input, but it is more efficient if it is.

        :param : The projection data.
        :type s: :class:`numpy.ndarray`
        :param out: Array to store result in.
        :type out: :class:`numpy.ndarray`
        """
        s = self.__checkArray(s, self.sshape)
        sid = self.data_mod.link('-sino', self.pg, s)
        if out is None:
            out = np.zeros(self.vshape, dtype=np.float32)
        vid = self.data_mod.link('-vol', self.vg, out)

        cfg = creators.astra_dict('BP' + self.appendString)
        cfg['ProjectionDataId'] = sid
        cfg['ReconstructionDataId'] = vid
        cfg['ProjectorId'] = self.proj_id
        bp_id = algorithm.create(cfg)
        algorithm.run(bp_id)

        algorithm.delete(bp_id)
        self.data_mod.delete([vid, sid])
        return out
    def create_sino3d_gpu(data,
                          proj_geom,
                          vol_geom,
                          returnData=True,
                          gpuIndex=None,
                          sino_id=None):
        """Create a forward projection of an image (3D).
    :param data: Image data or ID.
    :type data: :class:`numpy.ndarray` or :class:`int`
    :param proj_geom: Projection geometry.
    :type proj_geom: :class:`dict`
    :param vol_geom: Volume geometry.
    :type vol_geom: :class:`dict`
    :param returnData: If False, only return the ID of the forward projection.
    :type returnData: :class:`bool`
    :param gpuIndex: Optional GPU index.
    :type gpuIndex: :class:`int`
    :returns: :class:`int` or (:class:`int`, :class:`numpy.ndarray`) -- If ``returnData=False``, returns the ID of the forward projection. Otherwise, returns a tuple containing the ID of the forward projection and the forward projection itself, in that order.
    """

        if isinstance(data, np.ndarray):
            volume_id = data3d.create('-vol', vol_geom, data)
        else:
            volume_id = data
        if sino_id is None:
            sino_id = data3d.create('-sino', proj_geom, 0)

        algString = 'FP3D_CUDA'
        cfg = astra_dict(algString)
        if not gpuIndex == None:
            cfg['option'] = {'GPUindex': gpuIndex}
        cfg['ProjectionDataId'] = sino_id
        cfg['VolumeDataId'] = volume_id
        alg_id = algorithm.create(cfg)
        algorithm.run(alg_id)
        algorithm.delete(alg_id)

        if isinstance(data, np.ndarray):
            data3d.delete(volume_id)
        if sino_id is None:
            if returnData:
                return sino_id, data3d.get(sino_id)
            else:
                return sino_id
        else:
            if returnData:
                return sino_id, data3d.get_shared(sino_id)
            else:
                return sino_id
    def create_backprojection3d_gpu(data, proj_geom, vol_geom, returnData=True, vol_id=None):
        """Create a backprojection of a sinogram (3D) using CUDA.
            :param data: Sinogram data or ID.
            :type data: :class:`numpy.ndarray` or :class:`int`
            :param proj_geom: Projection geometry.
            :type proj_geom: :class:`dict`
            :param vol_geom: Volume geometry.
            :type vol_geom: :class:`dict`
            :param returnData: If False, only return the ID of the backprojection.
            :type returnData: :class:`bool`
            :param vol_id: ID of the np array linked with astra
            :type vol_id: int, default None
            :returns: :class:`int` or (:class:`int`, :class:`numpy.ndarray`) -- If ``returnData=False``, returns the ID of the backprojection. Otherwise, returns a tuple containing the ID of the backprojection and the backprojection itself, in that order.
        """
        if isinstance(data, np.ndarray):
            sino_id = data3d.create('-sino', proj_geom, data)
        else:
            sino_id = data

        if vol_id is None:
            vol_id = data3d.create('-vol', vol_geom, 0)

        cfg = astra_dict('BP3D_CUDA')
        cfg['ProjectionDataId'] = sino_id
        cfg['ReconstructionDataId'] = vol_id
        alg_id = algorithm.create(cfg)
        algorithm.run(alg_id)
        algorithm.delete(alg_id)

        if isinstance(data, np.ndarray):
            data3d.delete(sino_id)

        if vol_id is not None:
            if returnData:
                return vol_id, data3d.get_shared(vol_id)
            else:
                return vol_id
        else:
            if returnData:
                return vol_id, data3d.get(vol_id)
            else:
                return vol_id
Exemple #4
0
    def reconstruct(self, method, s, iterations=1, extraOptions=None):
        """Reconstruct an object.

        :param method: Method to use for reconstruction.
        :type method: :class:`string`
        :param s: The projection data.
        :type s: :class:`numpy.ndarray`
        :param iterations: Number of iterations to use.
        :type iterations: :class:`int`
        :param extraOptions: Extra options to use during reconstruction (i.e. for cfg['option']).
        :type extraOptions: :class:`dict`
        """
        if extraOptions == {}:
            opts = {}

        if extraOptions is None:
            opts = {}

        s = self.__checkArray(s, self.sshape)
        sid = self.data_mod.link('-sino', self.pg, s)
        v = np.zeros(self.vshape, dtype=np.float32)
        vid = self.data_mod.link('-vol', self.vg, v)
        cfg = creators.astra_dict(method)
        cfg['ProjectionDataId'] = sid
        cfg['ReconstructionDataId'] = vid
        cfg['ProjectorId'] = self.proj_id
        if 'FilterType' in list(extraOptions.keys()):
            cfg['FilterType'] = extraOptions['FilterType']
            opts = {
                key: extraOptions[key]
                for key in extraOptions if key != 'FilterType'
            }
        else:
            opts = extraOptions

        cfg['option'] = opts
        alg_id = algorithm.create(cfg)
        algorithm.run(alg_id, iterations)
        algorithm.delete(alg_id)
        self.data_mod.delete([vid, sid])
        return v